How to control Chaplygin’s sphere using rotors
暂无分享,去创建一个
[1] Jorge Dias,et al. Design and control of a spherical mobile robot , 2003 .
[2] Yun-Jung Lee,et al. Spherical robot with new type of two-pendulum driving mechanism , 2011, 2011 15th IEEE International Conference on Intelligent Engineering Systems.
[3] Yu. G. Martynenko. Motion control of mobile wheeled robots , 2007 .
[4] A. Agrachev,et al. An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[5] Zexiang Li,et al. Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..
[6] Joel W. Burdick,et al. Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[7] J. J. Duistermaat. Chaplygin's sphere , 2004 .
[8] Ravi N. Banavar,et al. Motion analysis of a spherical mobile robot , 2009, Robotica.
[9] R. Mukherjee,et al. Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .
[10] A. Kilin,et al. The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics , 2003, nlin/0303024.
[11] Mark A. Minor,et al. Simple motion planning strategies for spherobot: a spherical mobile robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[12] A. Moskvin. Chaplygin's ball with a gyrostat: singular solutions , 2009 .
[13] Alexey V. Borisov,et al. Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems , 2008 .
[14] Ranjan Mukherjee,et al. Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot , 2012, J. Intell. Robotic Syst..
[15] François Michaud,et al. Roball, the Rolling Robot , 2002, Auton. Robots.
[16] Wei-Liang Chow. Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .
[17] P. Crouch,et al. Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .
[18] Anthony M. Bloch,et al. Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top , 2008 .
[19] M. Levi. Geometric phases in the motion of rigid bodies , 1993 .
[20] K. Nagase,et al. Control of a Sphere Rolling on a Plane with Constrained Rolling Motion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[21] Andre P. Mazzoleni,et al. Design, Analysis and Testing of Mars Tumbleweed Rover Concepts , 2008 .
[22] Mehdi Keshmiri,et al. Stabilization of an autonomous rolling sphere navigating in a labyrinth arena: A geometric mechanics perspective , 2012, Syst. Control. Lett..
[23] Antonio Bicchi,et al. Nonholonomic kinematics and dynamics of the Sphericle , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
[24] François Alouges,et al. A motion planning algorithm for the rolling-body problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[25] A. Borisov,et al. Topology and stability of integrable systems , 2010 .
[26] A. Kilin. THE DYNAMICS OF CHAPLYGIN BALL: THE QUALITATIVE AND COMPUTER ANALYSIS , 2001 .
[27] Vijay Kumar,et al. Optimal Gait Selection for Nonholonomic Locomotion Systems , 2000, Int. J. Robotics Res..
[28] Алексей Владимирович Борисов,et al. Топология и устойчивость интегрируемых систем@@@Topology and stability of integrable systems , 2010 .
[29] Alexey V. Borisov,et al. The Rolling Body Motion Of a Rigid Body on a Plane and a Sphere. Hierarchy of Dynamics , 2003, nlin/0306002.
[30] Shigeyuki Hosoe,et al. Dynamic Model, Haptic Solution, and Human-Inspired Motion Planning for Rolling-Based Manipulation , 2009, J. Comput. Inf. Sci. Eng..
[31] Wei-Liang Chow. Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .
[32] Bernard Bonnard,et al. Contrôlabilité des Systèmes Bilinéaires , 1981, Mathematical systems theory.
[33] Ravi N. Banavar,et al. Design and analysis of a spherical mobile robot , 2010 .
[34] Tomi Ylikorpi,et al. Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.
[35] Millard F. Beatty,et al. Dynamics of a Rigid Body , 2006 .
[36] Hao Wu,et al. Modeling and simulation of a spherical mobile robot , 2010, Comput. Sci. Inf. Syst..
[37] Shinichi Hirai,et al. Crawling and Jumping by a Deformable Robot , 2006, Int. J. Robotics Res..
[38] Rhodri H. Armour,et al. Rolling in nature and robotics: A review , 2006 .
[39] Qiang Zhan,et al. Design, analysis and experiments of an omni-directional spherical robot , 2011, 2011 IEEE International Conference on Robotics and Automation.
[40] S. R. Moghadasi. Rolling of a body on a plane or a sphere: a geometric point of view , 2004, Bulletin of the Australian Mathematical Society.
[41] Atsushi Koshiyama,et al. Design and Control of an All-Direction Steering Type Mobile Robot , 1993, Int. J. Robotics Res..
[42] Brody Dylan Johnson. The Nonholonomy of the Rolling Sphere , 2007, Am. Math. Mon..
[43] Vincent A. Crossley. A Literature Review on the Design of Spherical Rolling Robots , 2006 .
[44] Jair Koiller,et al. Rubber rolling over a sphere , 2006, math/0612036.
[45] Antonio Bicchi,et al. Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..
[46] Anthony M. Bloch,et al. Controllability and motion planning of multibody systems with nonholonomic constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).