How to control Chaplygin’s sphere using rotors

In the paper we study the control of a balanced dynamically non-symmetric sphere with rotors. The no-slip condition at the point of contact is assumed. The algebraic controllability is shown and the control inputs that steer the ball along a given trajectory on the plane are found. For some simple trajectories explicit tracking algorithms are proposed.

[1]  Jorge Dias,et al.  Design and control of a spherical mobile robot , 2003 .

[2]  Yun-Jung Lee,et al.  Spherical robot with new type of two-pendulum driving mechanism , 2011, 2011 15th IEEE International Conference on Intelligent Engineering Systems.

[3]  Yu. G. Martynenko Motion control of mobile wheeled robots , 2007 .

[4]  A. Agrachev,et al.  An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[5]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[6]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  J. J. Duistermaat Chaplygin's sphere , 2004 .

[8]  Ravi N. Banavar,et al.  Motion analysis of a spherical mobile robot , 2009, Robotica.

[9]  R. Mukherjee,et al.  Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .

[10]  A. Kilin,et al.  The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics , 2003, nlin/0303024.

[11]  Mark A. Minor,et al.  Simple motion planning strategies for spherobot: a spherical mobile robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[12]  A. Moskvin Chaplygin's ball with a gyrostat: singular solutions , 2009 .

[13]  Alexey V. Borisov,et al.  Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems , 2008 .

[14]  Ranjan Mukherjee,et al.  Design, Fabrication and Control of Spherobot: A Spherical Mobile Robot , 2012, J. Intell. Robotic Syst..

[15]  François Michaud,et al.  Roball, the Rolling Robot , 2002, Auton. Robots.

[16]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[17]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[18]  Anthony M. Bloch,et al.  Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top , 2008 .

[19]  M. Levi Geometric phases in the motion of rigid bodies , 1993 .

[20]  K. Nagase,et al.  Control of a Sphere Rolling on a Plane with Constrained Rolling Motion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  Andre P. Mazzoleni,et al.  Design, Analysis and Testing of Mars Tumbleweed Rover Concepts , 2008 .

[22]  Mehdi Keshmiri,et al.  Stabilization of an autonomous rolling sphere navigating in a labyrinth arena: A geometric mechanics perspective , 2012, Syst. Control. Lett..

[23]  Antonio Bicchi,et al.  Nonholonomic kinematics and dynamics of the Sphericle , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[24]  François Alouges,et al.  A motion planning algorithm for the rolling-body problem , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  A. Borisov,et al.  Topology and stability of integrable systems , 2010 .

[26]  A. Kilin THE DYNAMICS OF CHAPLYGIN BALL: THE QUALITATIVE AND COMPUTER ANALYSIS , 2001 .

[27]  Vijay Kumar,et al.  Optimal Gait Selection for Nonholonomic Locomotion Systems , 2000, Int. J. Robotics Res..

[28]  Алексей Владимирович Борисов,et al.  Топология и устойчивость интегрируемых систем@@@Topology and stability of integrable systems , 2010 .

[29]  Alexey V. Borisov,et al.  The Rolling Body Motion Of a Rigid Body on a Plane and a Sphere. Hierarchy of Dynamics , 2003, nlin/0306002.

[30]  Shigeyuki Hosoe,et al.  Dynamic Model, Haptic Solution, and Human-Inspired Motion Planning for Rolling-Based Manipulation , 2009, J. Comput. Inf. Sci. Eng..

[31]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[32]  Bernard Bonnard,et al.  Contrôlabilité des Systèmes Bilinéaires , 1981, Mathematical systems theory.

[33]  Ravi N. Banavar,et al.  Design and analysis of a spherical mobile robot , 2010 .

[34]  Tomi Ylikorpi,et al.  Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.

[35]  Millard F. Beatty,et al.  Dynamics of a Rigid Body , 2006 .

[36]  Hao Wu,et al.  Modeling and simulation of a spherical mobile robot , 2010, Comput. Sci. Inf. Syst..

[37]  Shinichi Hirai,et al.  Crawling and Jumping by a Deformable Robot , 2006, Int. J. Robotics Res..

[38]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[39]  Qiang Zhan,et al.  Design, analysis and experiments of an omni-directional spherical robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[40]  S. R. Moghadasi Rolling of a body on a plane or a sphere: a geometric point of view , 2004, Bulletin of the Australian Mathematical Society.

[41]  Atsushi Koshiyama,et al.  Design and Control of an All-Direction Steering Type Mobile Robot , 1993, Int. J. Robotics Res..

[42]  Brody Dylan Johnson The Nonholonomy of the Rolling Sphere , 2007, Am. Math. Mon..

[43]  Vincent A. Crossley A Literature Review on the Design of Spherical Rolling Robots , 2006 .

[44]  Jair Koiller,et al.  Rubber rolling over a sphere , 2006, math/0612036.

[45]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[46]  Anthony M. Bloch,et al.  Controllability and motion planning of multibody systems with nonholonomic constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).