A tale of two metrics: simultaneous bounds on competitiveness and regret

We consider algorithms for “smoothed online convex optimization” (SOCO) problems, which are a hybrid between online convex optimization (OCO) and metrical task system (MTS) problems. Historically, the performance metric for OCO was regret and that for MTS was competitive ratio (CR). There are algorithms with either sublinear regret or constant CR, but no known algorithm achieves both simultaneously. We show that this is a fundamental limitation – no algorithm (deterministic or randomized) can achieve sublinear regret and a constant CR, even when the objective functions are linear and the decision space is one dimensional. However, we present an algorithm that, for the important one dimensional case, provides sublinear regret and a CR that grows arbitrarily slowly.

[1]  Santosh S. Vempala,et al.  Efficient algorithms for universal portfolios , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[2]  G. J. A. Stern,et al.  Queueing Systems, Volume 2: Computer Applications , 1976 .

[3]  Peter L. Bartlett,et al.  A Regularization Approach to Metrical Task Systems , 2010, ALT.

[4]  Christos H. Papadimitriou,et al.  On the k-server conjecture , 1995, JACM.

[5]  Yongbing Zhang,et al.  Traffic-based reconfiguration for logical topologies in large-scale WDM optical networks , 2005, Journal of Lightwave Technology.

[6]  Sudipto Guha,et al.  Multi-armed Bandits with Metric Switching Costs , 2009, ICALP.

[7]  David Eppstein,et al.  Tracking Moving Objects with Few Handovers , 2011, WADS.

[8]  Anand Sivasubramaniam,et al.  Optimal power cost management using stored energy in data centers , 2011, PERV.

[9]  Adam Tauman Kalai,et al.  Static Optimality and Dynamic Search-Optimality in Lists and Trees , 2002, SODA '02.

[10]  Seshadhri Comandur,et al.  Efficient learning algorithms for changing environments , 2009, ICML '09.

[11]  Lachlan L. H. Andrew,et al.  Online algorithms for geographical load balancing , 2012, 2012 International Green Computing Conference (IGCC).

[12]  Mor Harchol-Balter,et al.  Optimality analysis of energy-performance trade-off for server farm management , 2010, Perform. Evaluation.

[13]  Yuval Rabani,et al.  A decomposition theorem and bounds for randomized server problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[14]  T. Cover Universal Portfolios , 1996 .

[15]  Lyle A. McGeoch,et al.  Competitive algorithms for on-line problems , 1988, STOC '88.

[16]  Adam Meyerson,et al.  Energy-efficient mobile data transport via online multi-network packet scheduling , 2010, International Conference on Green Computing.

[17]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[18]  Joseph Naor,et al.  Unified Algorithms for Online Learning and Competitive Analysis , 2012, COLT.

[19]  Demosthenis Teneketzis,et al.  Multi-armed bandits with switching penalties , 1996, IEEE Trans. Autom. Control..

[20]  CalafioreGiuseppe Carlo Multi-period portfolio optimization with linear control policies , 2008 .

[21]  Adam Tauman Kalai,et al.  Finely-competitive paging , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  Nagarajan Kandasamy,et al.  Risk-aware limited lookahead control for dynamic resource provisioning in enterprise computing systems , 2006, 2006 IEEE International Conference on Autonomic Computing.

[23]  Minghua Chen,et al.  Simple and effective dynamic provisioning for power-proportional data centers , 2011, 2012 46th Annual Conference on Information Sciences and Systems (CISS).

[24]  David A. Patterson,et al.  A Case For Adaptive Datacenters To Conserve Energy and Improve Reliability , 2008 .

[25]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[26]  Stan Kaplan,et al.  Power Plants: Characteristics and Costs , 2008 .

[27]  Avrim Blum,et al.  On-line Learning and the Metrical Task System Problem , 1997, COLT '97.

[28]  Adam Meyerson,et al.  Randomized k-server on hierarchical binary trees , 2008, STOC.

[29]  Adam Meyerson,et al.  Online oblivious routing , 2003, SPAA '03.

[30]  Jian Yang,et al.  Dynamic Cluster Reconfiguration for Energy Conservation in Computation Intensive Service , 2012, IEEE Transactions on Computers.

[31]  Gustavo de Veciana,et al.  Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs , 2012, 2012 Proceedings IEEE INFOCOM.

[32]  Allan Borodin,et al.  An optimal on-line algorithm for metrical task system , 1992, JACM.

[33]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[34]  Mark Herbster,et al.  Tracking the Best Expert , 1995, Machine Learning.

[35]  Quanyan Zhu,et al.  Dynamic energy-aware capacity provisioning for cloud computing environments , 2012, ICAC '12.

[36]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[37]  L H AndrewLachlan,et al.  Dynamic right-sizing for power-proportional data centers , 2013 .

[38]  Yishay Mansour,et al.  From External to Internal Regret , 2005, J. Mach. Learn. Res..

[39]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[40]  Adam Meyerson The parking permit problem , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[41]  Giuseppe Carlo Calafiore,et al.  Multi-period portfolio optimization with linear control policies , 2008, Autom..

[42]  Lachlan L. H. Andrew,et al.  Dynamic Right-Sizing for Power-Proportional Data Centers , 2011, IEEE/ACM Transactions on Networking.