Designing Nanostructures for Interfacial Phonon Transport via Bayesian Optimization

We demonstrate optimization of thermal conductance across nanostructures by developing a method combining atomistic Green's function and Bayesian optimization. With an aim to minimize and maximize the interfacial thermal conductance (ITC) across Si-Si and Si-Ge interfaces by means of Si/Ge composite interfacial structure, the method identifies the optimal structures from calculations of only a few percent of the entire candidates (over 60,000 structures). The obtained optimal interfacial structures are non-intuitive and impacting: the minimum-ITC structure is an aperiodic superlattice that realizes 50% reduction from the best periodic superlattice. The physical mechanism of the minimum ITC can be understood in terms of crossover of the two effects on phonon transport: as the layer thickness in superlattice increases, the impact of Fabry-Perot interference increases, and the rate of reflection at the layer-interfaces decreases. Aperiodic superlattice with spatial variation in the layer thickness has a degree of freedom to realize optimal balance between the above two competing mechanism. Furthermore, aperiodicity breaks the constructive phonon interference between the interfaces inhibiting the coherent phonon transport. The present work shows the effectiveness and advantage of material informatics in designing nanostructures to control heat conduction, which can be extended to other interfacial structures.

[1]  Eiji Higurashi,et al.  Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation , 2015 .

[2]  Jivtesh Garg,et al.  Minimum thermal conductivity in superlattices: A first-principles formalism , 2012 .

[3]  Simon R. Phillpot,et al.  Kapitza conductance and phonon scattering at grain boundaries by simulation , 2004 .

[4]  J. Shiomi,et al.  Tuning thermal conductance across sintered silicon interface by local nanostructures , 2015 .

[5]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[6]  D. Wishart Bioinformatics in Drug Development and Assessment , 2005, Drug metabolism reviews.

[7]  Ben Richard Hughes,et al.  A review of heat pipe systems for heat recovery and renewable energy applications , 2012 .

[8]  Austin J. Minnich,et al.  The best nanoparticle size distribution for minimum thermal conductivity , 2014, Scientific Reports.

[9]  K. Termentzidis,et al.  Thermal boundary conductance across rough interfaces probed by molecular dynamics , 2014, 1501.00934.

[10]  Tersoff Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems , 1990, Physical review. B, Condensed matter.

[11]  Peter Murray-Rust,et al.  Engineering Polymer Informatics: Towards The Computer-Aided Design of Polymers , 2008 .

[12]  Gang Chen,et al.  Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices , 2015 .

[13]  Omer Kaynakli,et al.  A review of the economical and optimum thermal insulation thickness for building applications , 2012 .

[14]  Jingsong Huang,et al.  Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. , 2015, The Journal of chemical physics.

[16]  Avik W. Ghosh,et al.  Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods , 2009 .

[17]  Koji Tsuda,et al.  Acceleration of stable interface structure searching using a kriging approach , 2016 .

[18]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[19]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[20]  I. Khalatnikov,et al.  Theory of the Kapitza Temperature Discontinuity at a Solid Body-liquid Helium Boundary , 1973 .

[21]  Zhonghua Ni,et al.  Minimum superlattice thermal conductivity from molecular dynamics , 2005 .

[22]  Catherine L. Worth,et al.  Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[24]  P. Manju,et al.  Fast machine-learning online optimization of ultra-cold-atom experiments , 2015, Scientific Reports.

[25]  Resonant thermal transport in semiconductor barrier structures , 2004, cond-mat/0401315.

[26]  K. Esfarjani,et al.  Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green's function method , 2012 .

[27]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[28]  Ronggui Yang,et al.  Equilibrium molecular dynamics simulations for the thermal conductivity of Si/Ge nanocomposites , 2013 .

[29]  Pamela M. Norris,et al.  Tuning Phonon Transport: From Interfaces to Nanostructures , 2013 .

[30]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[31]  P. Němec,et al.  Temperature dependence of coherent phonon dephasing in Cs Pb Cl 3 nanocrystals , 2005 .

[32]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[33]  D. Tang,et al.  Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion. , 2015, ACS applied materials & interfaces.

[34]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[35]  Atsuto Seko,et al.  Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization. , 2015, Physical review letters.

[36]  Tuning thermal transport in nanotubes with topological defects , 2011, 1203.2817.

[37]  Alexander Tropsha,et al.  Materials Informatics , 2019, J. Chem. Inf. Model..

[38]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[39]  S. Ju,et al.  Investigation on interfacial thermal resistance and phonon scattering at twist boundary of silicon , 2013 .

[40]  Ronggui Yang,et al.  Size-dependent phonon transmission across dissimilar material interfaces , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[42]  Gang Chen,et al.  Heat Transfer in Thermoelectric Materials and Devices , 2013 .

[43]  Amir Faghri,et al.  Review and Advances in Heat Pipe Science and Technology , 2012 .

[44]  T. Fisher,et al.  Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method , 2007 .

[45]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[46]  Krishna Rajan,et al.  Materials Informatics: The Materials ``Gene'' and Big Data , 2015 .

[47]  Koji Miyazaki,et al.  Heat conduction in nanostructured materials , 2016 .

[48]  Koji Tsuda,et al.  COMBO: An efficient Bayesian optimization library for materials science , 2016 .