A Novel Multi-Objective Optimization based Experimental Design and its Application for Physiological Model of Type 1 Diabetes

Abstract The design of optimal model based experiments is finding increasing use in various fields including chemical, pharmaceutical, biological engineering, and biomedicine. The traditional Model Based Optimal Experimental Design (MBOED) techniques focus on improving the parameter precision but do not consider the undesired possibility of increasing the correlation among the estimated parameters. In this paper, we propose a multi-objective optimization based experimental design technique, which provides the trade-off curve between information measure and correlation measure in the form of a Pareto-optimal front. This Pareto-optimal front gives the experimenter the freedom to choose appropriate experimental designs for real world system under investigation. The proposed methodology is illustrated using an example involving the identification of physiological models for characterizing Type 1 diabetic patients.

[1]  Thomas F. Edgar,et al.  PCA Combined Model-Based Design of Experiments (DOE) Criteria for Differential and Algebraic System Parameter Estimation , 2008 .

[2]  Michael L. Brisk,et al.  Sequential experimental design for precise parameter estimation. 2. Design criteria , 1985 .

[3]  D. L. Ma,et al.  Optimal model-based experimental design in batch crystallization , 2000 .

[4]  Massimiliano Barolo,et al.  A backoff strategy for model‐based experiment design under parametric uncertainty , 2009 .

[5]  Juergen Hahn,et al.  Integrating parameter selection with experimental design under uncertainty for nonlinear dynamic systems , 2008 .

[6]  Michael L. Brisk,et al.  "Sequential experimental design for precise parameter estimation. 1. Use of reparameterization". Reply to comments , 1986 .

[7]  Francis J. Doyle,et al.  Glucose control design using nonlinearity assessment techniques , 2005 .

[8]  B.W. Bequette,et al.  Model predictive control of blood glucose in type I diabetics using subcutaneous glucose measurements , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[9]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[10]  Cheng-Liang Chen,et al.  Model-Based Insulin Therapy Scheduling: A Mixed-Integer Nonlinear Dynamic Optimization Approach , 2009 .

[11]  R. Bergman,et al.  Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. , 1981, The Journal of clinical investigation.

[12]  R. Hovorka,et al.  Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. , 2004, Physiological measurement.

[13]  G. P. Rangaiah,et al.  Review and Analysis of Blood Glucose (BG) Models for Type 1 Diabetic Patients , 2011 .

[14]  David W. Bacon,et al.  Prospects for reducing correlations among parameter estimates in kinetic models , 1978 .

[15]  Claudio Cobelli,et al.  Models of subcutaneous insulin kinetics. A critical review , 2000, Comput. Methods Programs Biomed..

[16]  Richard D. Braatz,et al.  First-principles and direct design approaches for the control of pharmaceutical crystallization , 2005 .

[17]  Sandro Macchietto,et al.  Novel anticorrelation criteria for model‐based experiment design: Theory and formulations , 2008 .

[18]  Eva Balsa-Canto,et al.  Parameter estimation and optimal experimental design. , 2008, Essays in biochemistry.

[19]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[20]  Eva Balsa-Canto,et al.  Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation , 2007 .

[21]  Julian Morris,et al.  Optimal experimental design for the precision of a subset of model parameters in process development , 2006 .

[22]  Johannes P. Schlöder,et al.  Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes , 2004, Optim. Methods Softw..