A graph-convolutional neural network model for the prediction of chemical reactivity

We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).

[1]  William L. Jorgensen,et al.  Computer-assisted synthetic analysis. Synthetic strategies based on appendages and the use of reconnective transforms , 1976 .

[2]  W. L. Jorgensen,et al.  Computer-assisted mechanistic evaluation of organic reactions. 1. Overview , 1980 .

[3]  Alexandru T. Balaban,et al.  Applications of graph theory in chemistry , 1985, J. Chem. Inf. Comput. Sci..

[4]  Shinsaku Fujita,et al.  Description of organic reactions based on imaginary transition structures. 1. Introduction of new concepts , 1986, J. Chem. Inf. Comput. Sci..

[5]  B. Christoph Organic Synthesis, Reactions and Mechanisms , 1987 .

[6]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[7]  Kimito Funatsu,et al.  SOPHIA, a Knowledge Base-Guided Reaction Prediction System - Utilization of a Knowledge Base Derived from a Reaction Database , 1995, J. Chem. Inf. Comput. Sci..

[8]  Keith T. Taylor,et al.  ROBIA: a reaction prediction program. , 2005, Organic letters.

[9]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..

[10]  Pierre Baldi,et al.  Learning to Predict Chemical Reactions , 2011, J. Chem. Inf. Model..

[11]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[12]  Anthony P. F. Cook,et al.  Computer‐aided synthesis design: 40 years on , 2012 .

[13]  Clara D. Christ,et al.  Mining Electronic Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based Enumeration , 2012, J. Chem. Inf. Model..

[14]  Pierre Baldi,et al.  ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning , 2012, J. Chem. Inf. Model..

[15]  Wendy A Warr,et al.  A Short Review of Chemical Reaction Database Systems, Computer‐Aided Synthesis Design, Reaction Prediction and Synthetic Feasibility , 2014, Molecular informatics.

[16]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[17]  Michael G. Hutchings,et al.  Route Design in the 21st Century: The ICSYNTH Software Tool as an Idea Generator for Synthesis Prediction , 2015 .

[18]  Piotr Dittwald,et al.  Computer-Assisted Synthetic Planning: The End of the Beginning. , 2016, Angewandte Chemie.

[19]  Alán Aspuru-Guzik,et al.  Neural Networks for the Prediction of Organic Chemistry Reactions , 2016, ACS central science.

[20]  Marwin H. S. Segler,et al.  Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. , 2017, Chemistry.

[21]  Regina Barzilay,et al.  Prediction of Organic Reaction Outcomes Using Machine Learning , 2017, ACS central science.

[22]  John Bradshaw,et al.  Predicting Electron Paths , 2018, ArXiv.

[23]  Robert P. Sheridan,et al.  Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS , 2018, Science.

[24]  Connor W. Coley,et al.  Machine Learning in Computer-Aided Synthesis Planning. , 2018, Accounts of chemical research.

[25]  Paul Richardson,et al.  A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.

[26]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[27]  Ola Engkvist,et al.  Computational prediction of chemical reactions: current status and outlook. , 2018, Drug discovery today.

[28]  Derek T. Ahneman,et al.  Predicting reaction performance in C–N cross-coupling using machine learning , 2018, Science.

[29]  Gregor Urban,et al.  Deep learning for chemical reaction prediction , 2018 .

[30]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.