On the number of crossing-free matchings, (cycles, and partitions)

We show that a set of <i>n</i> points in the plane has at most <i>O</i>(10.05<sup><i>n</i></sup>) perfect matchings with crossing-free straight-line embedding. The expected number of perfect crossing-free matchings of a set of <i>n</i> points drawn i.i.d. from an arbitrary distribution in the plane is at most <i>O</i>(9.24<sup><i>n</i></sup>).Several related bounds are derived: (a) The number of all (not necessarily perfect) crossing-free matchings is at most <i>O</i>(10.43<sup><i>n</i></sup>). (b) The number of <i>left-right</i> perfect crossing-free matchings (where the points are designated as left or as right endpoints of the matching edges) is at most <i>O</i>(5.38<sup><i>n</i></sup>). (c) The number of perfect crossing-free matchings across a line (where all the matching edges must cross a fixed halving line of the set) is at most 4<sup><i>n</i></sup>.These bounds are employed to infer that a set of <i>n</i> points in the plane has at most <i>O</i>(86.81<sup><i>n</i></sup>) crossing-free spanning cycles (simple polygonizations), and at most <i>O</i>(12.24<sup><i>n</i></sup>) crossing-free partitions (partitions of the point set, so that the convex hulls of the individual parts are pairwise disjoint).

[1]  Christian Sohler,et al.  Encoding a triangulation as a permutation of its point set , 1997, CCCG.

[2]  Ferran Hurtado,et al.  On the number of plane graphs , 2006, SODA '06.

[3]  Gerhard J. Woeginger,et al.  Geometric Clusterings , 1991, J. Algorithms.

[4]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[5]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[6]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[7]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[8]  Emo Welzl,et al.  The Number of Triangulations on Planar Point Sets , 2006, GD.

[9]  Alexander Wolff,et al.  Delineating Boundaries for Imprecise Regions , 2005, Algorithmica.

[10]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[11]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[12]  Alfredo García Olaverri,et al.  A Lower Bound for the Number of Polygonizations of N Points in the Plane , 1998, Ars Comb..

[13]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[14]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[15]  Linda Denee,et al.  Polygonizations of point sets in the plane , 1988 .

[16]  O. Sigmund,et al.  Planar articulated mechanism design by graph theoretical enumeration , 2004 .

[17]  Monty Newborn,et al.  Optimal crossing-free Hamiltonian circuit drawings of Kn , 1980, J. Comb. Theory, Ser. B.

[18]  Marc Noy,et al.  Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..

[19]  Volker Kaibel,et al.  Counting lattice triangulations , 2002 .

[20]  Micha Sharir,et al.  Random triangulations of planar point sets , 2006, SCG '06.

[21]  Marc Noy,et al.  On the number of triangulations every planar point set must have , 2001, CCCG.

[22]  J. Pach Towards a Theory of Geometric Graphs , 2004 .

[23]  Raimund Seidel,et al.  A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.

[24]  E. Welzl,et al.  Convex Quadrilaterals and k-Sets , 2003 .

[25]  Warren D. Smith Studies in computational geometry motivated by mesh generation , 1989 .

[26]  T. Motzkin,et al.  Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .

[27]  Marc Noy,et al.  A lower bound on the number of triangulations of planar point sets , 2004, Comput. Geom..

[28]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[29]  Christian Borgelt,et al.  Minimum Weight Triangulation by Cutting Out Triangles , 2005, ISAAC.

[30]  Oswin Aichholzer,et al.  The point set order type data base: A collection of applications and results , 2001, CCCG.

[31]  Raimund Seidel Note – On the Number of Triangulations of Planar Point Sets , 1998, Comb..

[32]  Ryan B. Hayward,et al.  A lower bound for the optimal crossing-free Hamiltonian cycle problem , 1987, Discret. Comput. Geom..

[33]  Adrian Dumitrescu,et al.  On two lower bound constructions , 1999, CCCG.

[34]  Helmut Alt,et al.  On The Number Of Simple Cycles In Planar Graphs , 1999, Comb. Probab. Comput..

[35]  M. Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA 2006.

[36]  Raimund Seidel,et al.  New lower bounds for the number of straight-edge triangulations of a planar point set , 2004 .

[37]  Marc Noy,et al.  Counting triangulations of almost-convex polygons , 1997, Ars Comb..

[38]  Gary M. Shute,et al.  Polygonizations of point sets in the plane , 1988, Discret. Comput. Geom..

[39]  Emile E. Anclin An upper bound for the number of planar lattice triangulations , 2003, J. Comb. Theory, Ser. A.

[40]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..