Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating

Abstract Efficient large-area planar heterojunction (PHJ) perovskite solar cells (PSCs) were successfully developed by adapting a scalable doctor blade printing method under ambient condition. To achieve high-quality perovskite films onto poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) layer, the PEDOT:PSS was modified by adding poly(4-styrenesulfonic acid) (PSSH), which uses the electrostatic interaction between the sulfonyl functional groups in PEDOT:PSS and perovskite precursor ions. The resulting perovskite film on the modified PEDOT:PSS (M-PEDOT:PSS) exhibited excellent uniformity and surface coverage with high crystallinity even for large-area (15 mm×40 mm) scale. In addition, the power conversion efficiency (PCE) of the printed PSCs was significantly improved from 6% to 10.15% by introducing our M-PEDOT:PSS layer. This finding provides an important guideline to achieve highly efficient PSCs using scalable printing techniques.

[1]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[2]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[3]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[4]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[5]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[6]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[7]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[8]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[9]  W. Chin,et al.  IR-Luminescent PbS−Polystyrene Nanocomposites Prepared from Random Ionomers in Solution , 2004 .

[10]  R. Compton,et al.  Molecular‐Scale Hybridization of Clay Monolayers and Conducting Polymer for Thin‐Film Supercapacitors , 2015 .

[11]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[12]  Namchul Cho,et al.  Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade‐Coating , 2015 .

[13]  Myung-Han Yoon,et al.  Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. , 2012, ACS applied materials & interfaces.

[14]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[15]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[16]  Stelios A. Choulis,et al.  Thermal degradation mechanisms of PEDOT:PSS , 2009 .

[17]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[18]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[19]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[20]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[21]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[22]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[23]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[24]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[25]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[26]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[27]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[28]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[29]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[30]  Tae‐Woo Lee,et al.  Control of the Surface Composition of a Conducting‐Polymer Complex Film to Tune the Work Function , 2008 .

[31]  Jin Young Kim,et al.  Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. , 2014, Nanoscale.

[32]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[33]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[34]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .