Effect of Ligand Backbone on the Selectivity and Stability of Rhodium Hydroformylation Catalysts Derived from Phospholane-Phosphites

[1]  B. Cornils hydroformylation , 2020, Catalysis from A to Z.

[2]  David J. Vinyard,et al.  Highly active cationic cobalt(II) hydroformylation catalysts , 2020, Science.

[3]  A. Börner,et al.  Effects of Substitution Pattern in Phosphite Ligands Used in Rhodium-Catalyzed Hydroformylation on Reactivity and Hydrolysis Stability , 2019 .

[4]  Mesfin E. Janka,et al.  High iso Aldehyde Selectivity in the Hydroformylation of Short-Chain Alkenes. , 2019, Angewandte Chemie.

[5]  A. Slawin,et al.  Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. , 2017, Journal of the American Chemical Society.

[6]  J. Reek,et al.  Tuning the Porphyrin Building Block in Self‐Assembled Cages for Branched‐Selective Hydroformylation of Propene , 2017, Chemistry.

[7]  M. Clarke,et al.  Composition of catalyst resting states of hydroformylation catalysts derived from bulky mono-phosphorus ligands, rhodium dicarbonyl acetylacetonate and syngas , 2017 .

[8]  M. Clarke,et al.  Diastereoselective and Branched-Aldehyde-Selective Tandem Hydroformylation-Hemiaminal Formation: Synthesis of Functionalized Piperidines and Amino Alcohols. , 2017, Organic letters.

[9]  A. Börner,et al.  Synthesis of C 2‐Symmetric Diphosphormonoamidites and Their Use as Ligands in Rh‐Catalyzed Hydroformylation: Relationships between Activity and Hydrolysis Stability , 2017, ChemistryOpen.

[10]  A. Börner,et al.  Hydrolysis Stability of Bidentate Phosphites Utilized as Modifying Ligands in the Rh-Catalyzed n-Regioselective Hydroformylation of Olefins , 2016 .

[11]  Luca Weisz,et al.  Rhodium Catalyzed Hydroformylation , 2016 .

[12]  Zhiyong Yu,et al.  Enantioselective Hydroformylation of 1-Alkenes with Commercial Ph-BPE Ligand. , 2015, Organic letters.

[13]  A. Slawin,et al.  Synthesis and Reactivity of Chiral, Wide‐Bite‐Angle, Hybrid Diphosphorus Ligands , 2014 .

[14]  Samir H. Chikkali,et al.  Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation , 2014 .

[15]  M. Peruzzini,et al.  The role of metals and ligands in organic hydroformylation. , 2015, Topics in current chemistry.

[16]  M. Clarke,et al.  An asymmetric hydroformylation catalyst that delivers branched aldehydes from alkyl alkenes. , 2012, Angewandte Chemie.

[17]  A. Börner,et al.  Applied hydroformylation. , 2012, Chemical reviews.

[18]  P. V. van Leeuwen,et al.  Homogeneous Catalysts: Activity - Stability - Deactivation , 2011 .

[19]  A. Börner,et al.  Heteroatom-substituted secondary phosphine oxides (HASPOs) as decomposition products and preligands in rhodium-catalysed hydroformylation. , 2011, Chemistry.

[20]  K. Nozaki,et al.  New Low-Temperature NMR Studies Establish the Presence of a Second Equatorial−Apical Isomer of [(R,S)-Binaphos](CO)2RhH , 2010 .

[21]  T. Robert,et al.  Asymmetric hydroformylation using Taddol-based chiral phosphine-phosphite ligands , 2010 .

[22]  B. Hashiguchi,et al.  Highly enantioselective hydroformylation of aryl alkenes with diazaphospholane ligands. , 2008, Organic letters.

[23]  M. Peruzzini,et al.  Asymmetric Hydroformylation of Olefins with Rh Catalysts Modified with Chiral Phosphine−Phosphite Ligands , 2007 .

[24]  K. Abboud,et al.  Highly regio- and enantioselective asymmetric hydroformylation of olefins mediated by 2,5-disubstituted phospholane ligands. , 2005, Angewandte Chemie.

[25]  P. V. Leeuwen,et al.  New Chiral Phosphine−Phosphite Ligands in the Enantioselective Rhodium-Catalyzed Hydroformylation of Styrene , 2000 .

[26]  D. Powell,et al.  Electronically Dissymmetric DIPHOS Derivatives Give Higher n:i Regioselectivity in Rhodium-Catalyzed Hydroformylation Than Either of Their Symmetric Counterparts , 1999 .

[27]  K. Goubitz,et al.  Electronic Effect on Rhodium Diphosphine Catalyzed Hydroformylation: The Bite Angle Effect Reconsidered , 1998 .

[28]  M. LeeuwenvanP.W.N.,et al.  Fluxional Processes in Asymmetric Hydroformylation Catalysts [HrhLL(CO)2] Containing C2-Symmetric Diphosphite Ligands , 1997 .

[29]  D. Powell,et al.  Electron Withdrawing Substituents on Equatorial and Apical Phosphines Have Opposite Effects on the Regioselectivity of Rhodium Catalyzed Hydroformylation , 1997 .

[30]  T. Nanno,et al.  Highly Enantioselective Hydroformylation of Olefins Catalyzed by Rhodium(I) Complexes of New Chiral Phosphine−Phosphite Ligands , 1997 .

[31]  Walter Thiel,et al.  Theoretical study of the vibrational spectra of the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5 [M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt] , 1995 .

[32]  D. Powell,et al.  Diphosphines with natural bite angles near 120.degree. increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation , 1992 .

[33]  J. Sowa,et al.  Bidentate phosphine basicities as determined by enthalpies of protonation , 1991 .

[34]  A. Prock,et al.  Quantitative analysis of ligand effects. Part 3. Separation of phosphorus(III) ligands into pure .sigma.-donors and .sigma.-donor/.pi.-acceptors. Comparison of basicity and .sigma.-donicity , 1989 .

[35]  T. Allman,et al.  The basicity of phosphines , 1982 .

[36]  D. C. D. Jongh,et al.  Mass spectra and pyrolyses of o-phenylene sulfite and related compounds , 1972 .