Power-aware rateless codes in mobile wireless communication

Rateless error correction codes hold great potential for increasing the capacity of practical wireless networks by obviating the need for transmitters to estimate the highest reliable rate of an unpredictable wireless channel and send information at that rate. But the accumulation and intensive processing of noisy bits works against rateless codes' adoption in mobile devices, where energy is at a premium due to limited battery capacity. In this work, we identify a new tradeoff between energy efficiency and wireless capacity that rateless codes can make in low signal-to-noise ratio or highly variable "grey zone" conditions. We propose Power-Aware Rateless Codes (PRC), a design that integrates with the medium access control portion of a rateless wireless system, giving the system a way of selectively sacrificing small amounts of wireless capacity for large savings in decoder computation effort, thus reducing radio power consumption in challenging radio environments.

[1]  Steven W. McLaughlin,et al.  Rate-compatible puncturing of low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[2]  Christoph Meinel,et al.  Digital Communication , 2014, X.media.publishing.

[3]  Thomas Stockhammer,et al.  Raptor Forward Error Correction Scheme for Object Delivery , 2007, RFC.

[4]  N. Wehn,et al.  Low complexity stopping criterion for LDPC code decoders , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[5]  Lutz H.-J. Lampe,et al.  Decoding with Early Termination for Raptor Codes , 2008, IEEE Communications Letters.

[6]  Sachin Katti,et al.  Strider: automatic rate adaptation and collision handling , 2011, SIGCOMM.

[7]  Masoud Ardakani,et al.  Gear-shift decoding , 2006, IEEE Transactions on Communications.

[8]  F. Kschischang,et al.  Incremental Redundancy via Check Splitting , 2006, 23rd Biennial Symposium on Communications, 2006.

[9]  Devavrat Shah,et al.  Spinal codes , 2012, CCRV.

[10]  Raymond Knopp,et al.  Dynamic Power Management on LDPC Decoders , 2010, 2010 IEEE Computer Society Annual Symposium on VLSI.

[11]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[12]  Edward A. Lee,et al.  Digital Communication: Third Edition , 2003 .

[13]  Omid Etesami,et al.  Raptor codes on binary memoryless symmetric channels , 2006, IEEE Transactions on Information Theory.

[14]  Aidong Men,et al.  A stopping criterion for nonbinary LDPC codes over GF(q) , 2008, 2008 11th IEEE Singapore International Conference on Communication Systems.

[15]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[16]  P. Maymounkov Online codes , 2002 .

[17]  John G. Proakis,et al.  Digital Communications , 1983 .

[18]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[19]  Michael Luby,et al.  A digital fountain approach to reliable distribution of bulk data , 1998, SIGCOMM '98.

[20]  Mao-Ching Chiu,et al.  Bandwidth-Efficient Modulation Codes Based on Nonbinary Irregular Repeat–Accumulate Codes , 2008, IEEE Transactions on Information Theory.