Adaptive Contour Model for Real-Time Foreground Detection

A multiscale foreground detection method was developed to segment moving objects from a stationary background. The algorithm is based on a fixed-mesh-based contour model, which starts at the bounding box of the difference map between an input image and its background and ends at a final contour. An adaptive algorithm was developed to calculate an appropriate energy threshold to control the contours to identify the foreground silhouettes. Experiments show that this method more successfully ignores the negative influence of image noise to obtain an accurate foreground map than other foreground detection algorithms. Most shadow pixels are also eliminated by this method.