Effect of n- and p-Doping on Vacancy Formation in Cationic and Anionic Sublattices of (In,Al)As/AlAs and Al(Sb,As)/AlAs Heterostructures

The vacancy generation dynamics in doped semiconductor heterostructures with quantum dots (QD) formed in the cationic and anionic sublattices of AlAs is studied. We demonstrate experimentally that the vacancy-mediated high temperature diffusion is enhanced (suppressed) in n- and p-doped heterostructures with QDs formed in the cationic sublattice, while the opposite behavior occurs in the heterostructures with QDs formed in the anionic sublattice. A model describing the doping effect on the vacancy generation dynamics is developed. The effect of nonuniform charge carrier spatial distribution arisen in heterostructures at high temperatures on the vacancy generation and diffusion is revealed.

[1]  D. S. Abramkin,et al.  Structural Properties and Energy Spectrum of Novel GaSb/AlP Self-Assembled Quantum Dots , 2023, Nanomaterials.

[2]  D. Yakovlev,et al.  Optical Orientation of Excitons in a Longitudinal Magnetic Field in Indirect-Band-Gap (In,Al)As/AlAs Quantum Dots with Type-I Band Alignment , 2023, Nanomaterials.

[3]  A. Gornov,et al.  Dynamics of Vacancy Formation and Distribution in Semiconductor Heterostructures: Effect of Thermally Generated Intrinsic Electrons , 2023, Nanomaterials.

[4]  V. Atuchin,et al.  Dislocation Filter Based on LT-GaAs Layers for Monolithic GaAs/Si Integration , 2022, Nanomaterials.

[5]  V. Atuchin,et al.  Novel InGaSb/AlP Quantum Dots for Non-Volatile Memories , 2022, Nanomaterials.

[6]  D. Yakovlev,et al.  Spin dynamics of charged excitons in ultrathin (In,Al)(Sb,As)/AlAs and Al(Sb,As)/AlAs quantum wells with an indirect band gap , 2022, Physical Review B.

[7]  T. Xie,et al.  Application of Quantum Dot Interface Modification Layer in Perovskite Solar Cells: Progress and Perspectives , 2022, Nanomaterials.

[8]  D. Stefanatos,et al.  Efficient Biexciton Preparation in a Quantum Dot—Metal Nanoparticle System Using On-Off Pulses , 2021, Nanomaterials.

[9]  D. Yakovlev,et al.  Dynamic polarization of electron spins in indirect band gap (In,Al)As/AlAs quantum dots in a weak magnetic field: Experiment and theory , 2021, Physical Review B.

[10]  D. Yakovlev,et al.  Recombination and spin dynamics of excitons in thin (Ga,Al)(Sb,As)/AlAs quantum wells with an indirect band gap and type-I band alignment , 2020 .

[11]  D. Yakovlev,et al.  Dynamic Polarization of Electron Spins Interacting with Nuclei in Semiconductor Nanostructures. , 2020, Physical review letters.

[12]  D. Yakovlev,et al.  Electron-nuclei interaction in the X valley of (In,Al)As/AlAs quantum dots , 2020 .

[13]  S. S. K. Sinha,et al.  Dot size variability induced changes in the optical absorption spectra of interdiffused quantum dot systems , 2019, Applied Physics A.

[14]  D. S. Abramkin,et al.  Type-I Indirect-Gap Semiconductor Heterostructures on (110) Substrates , 2019, Semiconductors.

[15]  D. Yakovlev,et al.  Optical orientation and alignment of excitons in direct and indirect band gap (In,Al)As/AlAs quantum dots with type-I band alignment , 2019, Physical Review B.

[16]  P. LiKamWa,et al.  Effects of selective area intermixing on InAlGaAs multiple quantum well laser diode , 2019, Semiconductor Science and Technology.

[17]  D. Yakovlev,et al.  Optically detected magnetic resonance of photoexcited electrons in (In,Al)As/AlAs quantum dots with indirect band gap and type-I band alignment , 2018, Physical Review B.

[18]  E. Ivchenko,et al.  Spin dynamics and magnetic field induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment , 2017, 1704.07277.

[19]  M. Bhowmick,et al.  Relation between Debye temperature and energy band gap of semiconductors , 2017 .

[20]  N. Modine,et al.  Migration processes of the As interstitial in GaAs , 2016 .

[21]  A. Bakarov,et al.  Quantum dots formed in InSb/AlAs and AlSb/AlAs heterostructures , 2016 .

[22]  P. Spencer,et al.  Negative circular polarization as a universal property of quantum dots , 2015 .

[23]  E. Ivchenko,et al.  Spin-flip Raman scattering of the Γ-X mixed exciton in indirect band gap (In,Al)As/AlAs quantum dots , 2014, 1406.2684.

[24]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[25]  Roger Grimes,et al.  Vacancies and defect levels in III-V semiconductors , 2013 .

[26]  H. Tan,et al.  Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers , 2012 .

[27]  D. Yakovlev,et al.  Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap , 2011, 1107.4121.

[28]  T. Shamirzaev Type-I semiconductor heterostructures with an indirect-gap conduction band , 2011 .

[29]  A. Gutakovskii,et al.  Nonradiative energy transfer between vertically coupled indirect and direct bandgap InAs quantum dots , 2010 .

[30]  P. Holtz,et al.  Atomic and energy structure of InAs/AlAs quantum dots , 2008 .

[31]  K. Zhuravlev,et al.  Coexistence of direct and indirect band structures in arrays of InAs∕AlAs quantum dots , 2008 .

[32]  A. Greilich,et al.  Effect of thermal annealing on the hyperfine interaction in InAs/GaAs quantum dots , 2007, 0710.5091.

[33]  K. Zhuravlev,et al.  Energy spectrum and structure of thin pseudomorphic InAs quantum wells in an AlAs matrix : Photoluminescence spectra and band-structure calculations , 2007 .

[34]  E. Seebauer,et al.  Charged point defects in semiconductors , 2006 .

[35]  K. Zhuravlev,et al.  Narrowing of ground energy level distribution in an array of InAs/AlAs QDs by post grown annealing , 2006 .

[36]  James C. M. Hwang,et al.  Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion , 2006 .

[37]  Boon S. Ooi,et al.  Group-III intermixing in InAs∕InGaAlAs quantum dots-in-well , 2006 .

[38]  A. K. Kalagin,et al.  Strong sensitivity of photoluminescence of InAs/AlAs quantum dots to defects: evidence for lateral inter-dot transport , 2006 .

[39]  Devendra Gupta,et al.  Diffusion Processes in Advanced Technological Materials , 2004 .

[40]  H. Tan,et al.  Impurity free vacancy disordering of InGaAs quantum dots , 2004 .

[41]  M. S. Skolnick,et al.  Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons , 2004 .

[42]  N. Mousseau,et al.  Self-vacancies in gallium arsenide: An ab initio calculation , 2004, cond-mat/0409246.

[43]  E. Weber,et al.  Determination of the Gibbs free energy of formation of Ga vacancies in GaAs by positron annihilation , 2003 .

[44]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[45]  D. Hurle A COMPREHENSIVE THERMODYNAMIC ANALYSIS OF NATIVE POINT DEFECT AND DOPANT SOLUBILITIES IN GALLIUM ARSENIDE , 1999 .

[46]  B. R. Semyagin,et al.  In–Ga intermixing in low-temperature grown GaAs delta doped with In , 1999 .

[47]  S. Seshadri,et al.  Cation vacancy formation and migration in the AlGaAs heterostructure system , 1998 .

[48]  W. Gillin,et al.  Interdiffusion: A probe of vacancy diffusion in III-V materials , 1997 .

[49]  M. Scheffler,et al.  Theory of Self-Diffusion in GaAs* , 1996, cond-mat/9612026.

[50]  D. Nolte,et al.  Enhanced diffusion in nonstoichiometric quantum wells and the decay of supersaturated vacancy concentrations , 1996 .

[51]  R. Nieminen,et al.  Ab initio study of fully relaxed divacancies in GaAs. , 1996, Physical review. B, Condensed matter.

[52]  G. E. Pikus,et al.  Superlattices and Other Heterostructures , 1995 .

[53]  J. Marsh Quantum well intermixing , 1993 .

[54]  Kim,et al.  Measuring properties of point defects by electron microscopy: The Ga vacancy in GaAs. , 1992, Physical review letters.

[55]  Delerue,et al.  Electron-paramagnetic-resonance observation of gallium vacancy in electron-irradiated p-type GaAs. , 1992, Physical review. B, Condensed matter.

[56]  Saarinen,et al.  Ionization levels of As vacancies in as-grown GaAs studied by positron-lifetime spectroscopy. , 1991, Physical review. B, Condensed matter.

[57]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[58]  M. Puska Electronic structures of point defects in III-V compound semiconductors , 1989 .

[59]  D. L. Peterson,et al.  Properties of Ga vacancies in AlGaAs materials , 1989 .

[60]  W. Walukiewicz,et al.  Amphoteric native defects in semiconductors , 1989 .

[61]  Baraff,et al.  Electronic structure, total energies, and abundances of the elementary point defedts in GaAs. , 1985, Physical review letters.

[62]  B. Tuck Mechanisms of atomic diffusion in the III-V semiconductors , 1985 .

[63]  Stefan K. Estreicher,et al.  Theory of defects in semiconductors , 2007 .

[64]  M. Hetterich,et al.  Optics of semiconductors and their nanostructures , 2004 .

[65]  D. Zahn,et al.  Changes in the density of nonradiative recombination centers in GaAs/AlGaAs quantum-well structures as a result of treatment in CF4 plasma , 2002 .