Free Commutative Monoids in Homotopy Type Theory

We develop a constructive theory of finite multisets, defining them as free commutative monoids in Homotopy Type Theory. We formalise two algebraic presentations of this construction using 1-HITs, establishing the categorical universal property for each and thereby their equivalence. These presentations correspond to equational theories including a commutation axiom. In this setting, we prove important structural combinatorial properties of singleton multisets arising from concatenations and projections ofmultisets. This is done in generality, without assuming decidable equality on the carrier set. Further, as applications, we present a constructive formalisation of the relational model of differential linear logic and use it to characterise the equality type of multisets. This leads us to a novel conditional equational presentation of the finite-multiset construction and thereby to a sound and complete deduction system formultiset equality.

[1]  S. Hewitt,et al.  1980 , 1980, Literatur in der SBZ/DDR.

[2]  Herman Geuvers,et al.  Higher Inductive Types in Programming , 2017, J. Univers. Comput. Sci..

[3]  Carlo Angiuli,et al.  Internalizing representation independence with univalence , 2020, Proc. ACM Program. Lang..

[4]  Thierry Coquand,et al.  On Higher Inductive Types in Cubical Type Theory , 2018, LICS.

[5]  Ulrik Buchholtz,et al.  Higher Groups in Homotopy Type Theory , 2018, LICS.

[6]  Thomas Ehrhard,et al.  An introduction to differential linear logic: proof-nets, models and antiderivatives , 2016, Mathematical Structures in Computer Science.

[7]  G. Jantzen 1988 , 1988, The Winning Cars of the Indianapolis 500.

[8]  Robert Harper,et al.  Homotopical patch theory , 2014, ICFP.

[9]  Martin Hyland,et al.  Elements of a theory of algebraic theories , 2013, Theor. Comput. Sci..

[10]  Marcelo P. Fiore,et al.  Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic , 2007, TLCA.

[11]  Herman Geuvers,et al.  Finite sets in homotopy type theory , 2018, CPP.

[12]  M. Fiore An Axiomatics and a Combinatorial Model of Creation/Annihilation Operators , 2015, 1506.06402.

[13]  Thorsten Altenkirch,et al.  The Integers as a Higher Inductive Type , 2020, LICS.

[14]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[15]  Brian Day,et al.  Note on compact closed categories , 1977, Journal of the Australian Mathematical Society.

[16]  Thorsten Altenkirch,et al.  Monads need not be endofunctors , 2010, Log. Methods Comput. Sci..

[17]  J. Robin B. Cockett,et al.  Differential categories , 2006, Mathematical Structures in Computer Science.

[18]  Glynn Winskel,et al.  Relative pseudomonads, Kleisli bicategories, and substitution monoidal structures , 2016, 1612.03678.

[19]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[20]  Andreas Abel,et al.  Cubical agda: a dependently typed programming language with univalence and higher inductive types , 2019, Journal of Functional Programming.

[21]  Chris Kapulkin,et al.  Univalence in Simplicial Sets , 2012, 1203.2553.

[22]  Nils Anders Danielsson Bag Equivalence via a Proof-Relevant Membership Relation , 2012, ITP.

[23]  B. Day On closed categories of functors , 1970 .

[24]  D. Gifford 1973: , 1973, Charlotte Delbo.

[25]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[26]  Martin Hyland,et al.  Glueing and orthogonality for models of linear logic , 2003, Theor. Comput. Sci..

[27]  Thorsten Altenkirch,et al.  Free Higher Groups in Homotopy Type Theory , 2018, LICS.

[28]  Thierry Coquand,et al.  Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom , 2015, TYPES.

[29]  A. Kock Monads on symmetric monoidal closed categories , 1970 .

[30]  Robert Harper,et al.  Higher inductive types in cubical computational type theory , 2019, Proc. ACM Program. Lang..

[31]  Håkon Robbestad Gylterud,et al.  Multisets in type theory , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  S. Hewitt,et al.  1977 , 1977, Kuwait 1975/76 - 2019.

[33]  С.О. Грищенко 2014 , 2019, The Winning Cars of the Indianapolis 500.

[34]  P. Lumsdaine,et al.  Semantics of higher inductive types , 2017, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.