Modelling of plasma plume induced during laser welding

A theoretical modelling of the plasma plume induced during welding of iron sheets with CO2 laser is presented. The set of equations consists of the equations of conservation of mass, energy, momentum and the diffusion equation and is solved with the use of the commercially available program Fluent 6.1. The computations are made for a laser power of 1700 W and for two shielding gases—argon and helium. The results show a significant difference between these two cases. When helium is used as the shielding gas, the plasma is much smaller and burns only where the metal vapour is slightly diluted by helium. In the case when argon is the shielding gas, there are actually two plasmas: argon plasma and metal plasma. The flowfield shows that the velocity increases in the hot region but only part of the mass flux enters the plasma core. In the case when argon is used as the shielding gas, the total absorption of the laser radiation amounts to 18–33% of the laser power depending on argon and iron vapour velocities. In the case of helium the total absorption is much lower and amounts to ∼5% of the laser power.

[1]  J. Hoffman,et al.  Time-dependent spectroscopy of plasma plume under laser welding conditions , 2004 .

[2]  J. Hoffman,et al.  Emission coefficients of low temperature thermal iron plasma , 2004 .

[3]  X. Chen,et al.  Prediction of the laser-induced plasma characteristics in laser welding: a new modelling approach including a simplified keyhole model , 2003 .

[4]  Hai-xing Wang,et al.  Three-dimensional modelling of the laser-induced plasma plume characteristics in laser welding , 2003 .

[5]  J. Menart,et al.  Net emission coefficients for argon-iron thermal plasmas , 2002 .

[6]  J. Hoffman,et al.  Absorption of the laser beam during welding with CO/sub 2/ laser , 2002 .

[7]  K. Makowski Transport properties of the ionized Fe vapour , 1998 .

[8]  Z. Szymański,et al.  The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium , 1997 .

[9]  Peter Berger,et al.  The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers , 1995 .

[10]  P Berger,et al.  The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers , 1995 .

[11]  Eckhard Beyer,et al.  Schweißen mit Laser , 1995 .

[12]  G. Simon,et al.  A transport theoretical model of the keyhole plasma in penetration laser welding , 1993 .

[13]  Z. Szymański,et al.  Nonstationary laser‐sustained plasma , 1991 .

[14]  V. V. Sychev,et al.  Thermodynamic properties of helium , 1987 .

[15]  J. Halenka,et al.  Atomic partition functions for iron , 1984 .

[16]  R. S. Devoto Transport coefficients of ionized argon , 1973 .

[17]  J. Kopainsky Strahlungstransportmechanismus und Transportkoeffizienten im Ar-Hochdruckbogen , 1971 .

[18]  R. S. Devoto,et al.  Transport coefficients of partially ionized helium , 1968, Journal of Plasma Physics.

[19]  K. Hausser Landolt‐Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, neue Serie. Gruppe II: Atom‐ und Molekularphysik, Band 1: Magnetische Eigenschaften freier Radikale. Von H. Fischer. Springer‐Verlag, Berlin ‐ Heidelberg ‐ New York 1965. X, 154 Seiten. Preis: 68,‐ DM , 1965 .

[20]  Paul Felenbok,et al.  Data for plasmas in local thermodynamic equilibrium , 1965 .