Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model

We consider fixed scan Gibbs and block Gibbs samplers for a Bayesian hierarchical random effects model with proper conjugate priors. A drift condition given in Meyn and Tweedie (1993, Chapter 15) is used to show that these Markov chains are geometrically ergodic. Showing that a Gibbs sampler is geometrically ergodic is the first step toward establishing central limit theorems, which can be used to approximate the error associated with Monte Carlo estimates of posterior quantities of interest. Thus, our results will be of practical interest to researchers using these Gibbs samplers for Bayesian data analysis.

[1]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[2]  L. Tierney,et al.  Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .

[3]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[4]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[5]  D. Gianola,et al.  Marginal inferences about variance components in a mixed linear model using Gibbs sampling , 1993, Genetics Selection Evolution.

[6]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[7]  Kung-Sik Chan Asymptotic behavior of the Gibbs sampler , 1993 .

[8]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[9]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[10]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[11]  C. Geyer,et al.  Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[12]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[13]  Hani Doss Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .

[14]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[15]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[16]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[17]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[18]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[19]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[20]  George Casella,et al.  Functional Compatibility, Markov Chains and Gibbs Sampling with Improper Posteriors , 1998 .

[21]  Gareth O. Roberts,et al.  Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .