Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model
暂无分享,去创建一个
[1] E. Nummelin. General irreducible Markov chains and non-negative operators: Preface , 1984 .
[2] L. Tierney,et al. Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .
[3] R. Kass,et al. Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .
[4] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[5] D. Gianola,et al. Marginal inferences about variance components in a mixed linear model using Gibbs sampling , 1993, Genetics Selection Evolution.
[6] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[7] Kung-Sik Chan. Asymptotic behavior of the Gibbs sampler , 1993 .
[8] Nicholas G. Polson,et al. On the Geometric Convergence of the Gibbs Sampler , 1994 .
[9] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[10] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[11] C. Geyer,et al. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[12] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[13] Hani Doss. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[14] J. Rosenthal. RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .
[15] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[16] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[17] G. Casella,et al. The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .
[18] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[19] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[20] George Casella,et al. Functional Compatibility, Markov Chains and Gibbs Sampling with Improper Posteriors , 1998 .
[21] Gareth O. Roberts,et al. Markov‐chain monte carlo: Some practical implications of theoretical results , 1998 .