Local detectors and compact descriptors for visual search: A quantitative comparison

Local Visual detectors and descriptors have been studied for many years, but their applications (e.g. mobile visual search) in large volume, low-cost, low-power embedded systems have been limited or negligible to date. One reason is the lack of a worldwide industry standard. MPEG Compact Descriptors for Visual Search (CDVS) working group filled this gap by defining a high-performance extraction stage and the bitstream syntax at its output in order to achieve interoperability between different implementations of clients and servers. In a previous work, we presented an analysis of various gray-level interest point detection and description algorithms, which was also contributed to CDVS. This work extends the previous analysis using the MPEG CDVS Test Model framework to consider additional detectors and the use of color descriptors.

[1]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Peter Shirley,et al.  oRGB: A Practical Opponent Color Space for Computer Graphics , 2009, IEEE Computer Graphics and Applications.

[6]  Fahad Shahbaz Khan,et al.  Modulating Shape Features by Color Attention for Object Recognition , 2012, International Journal of Computer Vision.

[7]  Cordelia Schmid,et al.  Applying Color Names to Image Description , 2007, 2007 IEEE International Conference on Image Processing.

[8]  Chengjun Liu,et al.  A New Color SIFT Descriptor and Methods for Image Category Classification , 2010 .

[9]  Inderjit S. Dhillon,et al.  A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification , 2003, J. Mach. Learn. Res..

[10]  Fahad Shahbaz Khan,et al.  Discriminative Color Descriptors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Adrien Bartoli,et al.  Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces , 2013, BMVC.

[12]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Cheng-Hsin Hsu,et al.  Mobile augmented reality for books on a shelf , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[15]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[16]  Heesung Jun,et al.  Vision-based location positioning using augmented reality for indoor navigation , 2008, IEEE Transactions on Consumer Electronics.

[17]  Raimondo Schettini,et al.  Quantitative review of local descriptors for visual search , 2013, 2013 IEEE Third International Conference on Consumer Electronics ¿ Berlin (ICCE-Berlin).

[18]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[19]  Claudio Cusano,et al.  Color Target Localization under Varying Illumination Conditions , 2011, CCIW.

[20]  M. Vanrell,et al.  Parametric fuzzy sets for automatic color naming. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[23]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[24]  Sang Hwa Lee,et al.  Interactive e-learning system using pattern recognition and augmented reality , 2009, IEEE Transactions on Consumer Electronics.

[25]  Bernd Girod,et al.  Mobile Visual Search , 2011, IEEE Signal Processing Magazine.

[26]  Bernd Girod,et al.  Fast geometric re-ranking for image-based retrieval , 2010, 2010 IEEE International Conference on Image Processing.

[27]  Adrien Bartoli,et al.  KAZE Features , 2012, ECCV.

[28]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.