Pressure-dependent partition functions

It is shown that the partition functions relating to statistical ensembles can be classified as cumulative, distributive or differential with regard to any of the extensive thermodynamic variables. The Laplace transforms involved in the general formulation of transformed partition functions, when extensive parameters are replaced by their conjugate intensive variables, are two-sided and appear in different forms according to the classification mentioned. The petit partition function at constant pressure can be defined for both classical and quantal systems as a Stieltjes integral or dimensionless Laplace transform over the volume-dependent partition function. This expression contains no arbitrary external parameters and satisfies all the conditions formulated by Munster; it can be interpreted as the ratio of two partition functions, the one relating jointly to the system and a macroscopic boundary, and the second to the boundary alone. It is known that the constant pressure grand partition function as def...

[1]  W. Brown,et al.  Adiabatic second-order energy derivatives in quantum mechanics , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  M. Dole,et al.  Thermodynamics and Statistical Mechanics , 1957 .

[3]  A. Münster Anwendung der δ-Funktion auf die mikrokanonische Gesamtheit , 1954 .

[4]  A. Münster Statistische Schwankungen und thermodynamische Stabilität , 1953 .

[5]  M. Wang,et al.  Statistical Theory of Networks of Non‐Gaussian Flexible Chains , 1952 .

[6]  W. E. Scott Operational calculus based on the two-sided Laplace integral , 1951 .

[7]  I. Prigogine Remarque sur les ensembles statistiques dans les variables pression, temperature, potentiels chimiques , 1950 .

[8]  H. D. Ursell,et al.  On one-dimensional regular assemblies , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  R. Kubo Statistical Theory of Linear Polymers. I. Intramolecular Statistics , 1947 .

[10]  Hubert M. James,et al.  Theory of the Elastic Properties of Rubber , 1943 .

[11]  E. A. Guggenheim Grand Partition Functions and So‐Called ``Thermodynamic Probability'' , 1939 .

[12]  A. Münster,et al.  Zur Theorie der generalisierten Gesamtheiten , 1959 .

[13]  W. Byers Brown,et al.  Constant pressure ensembles in statistical mechanics , 1958 .

[14]  H. C. Longuet-Higgins One-dimensional multicomponent mixtures , 1958 .

[15]  D. Ter Haar,et al.  Elements of Statistical Mechanics , 1954 .

[16]  G. S. Rushbrooke Introduction to statistical mechanics , 1949 .