Gradient Computation for Model Calibration with Pointwise Observations

Mathematical models for option pricing often result in partial differential equations of parabolic type. The calibration of these models leads to an optimization problem with PDE constraints and usually pointwise observations in the objective function. Thus, the adjoint equation of this problem involves Dirac delta functions and needs a special treatment from a numerical point of view. We show by means of numerical results that also the order of discretizing and optimizing plays an important role.

[1]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[2]  M. Giles,et al.  Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .

[3]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[4]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[5]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[6]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[7]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[8]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[9]  N. Chriss Black-Scholes and Beyond: Option Pricing Models , 1996 .

[10]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[11]  E. Sachs,et al.  Reduced order models in PIDE constrained optimization , 2010 .

[12]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[13]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[14]  Wei Gong,et al.  A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control , 2014, SIAM J. Control. Optim..

[15]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[16]  Ekkehard W. Sachs,et al.  Efficient solution of a partial integro-differential equation in finance , 2008 .

[17]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[18]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[19]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[20]  Ekkehard W. Sachs,et al.  A priori error estimates for reduced order models in finance , 2013 .

[21]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[22]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[23]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[24]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[25]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[26]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .