Writhing geometry of open DNA

Motivated by recent experiments on DNA torsion-force-extension characteristics we consider the writhing geometry of open stiff molecules. We exhibit a cyclic motion which allows arbitrarily large twisting of the end of a molecule via an activated process. This process is suppressed for forces larger than femtonewtons which allows us to show that experiments are sensitive to a generalization of the Călugăreanu–White formula for the writhe. Using numerical methods we compare this formulation of the writhe with recent analytic calculations.

[1]  M. Mézard,et al.  Bouchiat and Mézard Reply , 2002 .

[2]  A. Vologodskii Distributions of Topological States in Circular DNA , 2001, Molecular Biology.

[3]  A. Maggs,et al.  Comment on "Elasticity model of a supercoiled DNA molecule". , 2001, Physical review letters.

[4]  K. Klenin,et al.  Computation of writhe in modeling of supercoiled DNA. , 2000, Biopolymers.

[5]  A. C. Maggs,et al.  Writhing geometry at finite temperature: Random walks and geometric phases for stiff polymers , 2000, cond-mat/0009182.

[6]  A. Grosberg,et al.  Critical exponents for random knots , 1999, Physical review letters.

[7]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[8]  Philip Nelson,et al.  Entropic Elasticity of Twist-Storing Polymers , 1997, cond-mat/9712004.

[9]  J. Marko,et al.  Extension of torsionally stressed DNA by external force. , 1997, Biophysical journal.

[10]  Tetsuo Deguchi,et al.  Universality of random knotting , 1997 .

[11]  G. Fredrickson The theory of polymer dynamics , 1996 .

[12]  R. Lavery,et al.  DNA: An Extensible Molecule , 1996, Science.

[13]  Marko,et al.  Statistical mechanics of supercoiled DNA. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  J. C. Niel,et al.  Conformational distribution of heptaalanine: Analysis using a new Monte Carlo chain growth method , 1992 .

[15]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[16]  A. Comtet,et al.  Magnetic fields and Brownian motion on the 2-sphere , 1991 .

[17]  V V Anshelevich,et al.  Variance of writhe for wormlike DNA rings with excluded volume. , 1989, Journal of biomolecular structure & dynamics.

[18]  V. Jones Hecke algebra representations of braid groups and link polynomials , 1987 .

[19]  M. Berry Interpreting the anholonomy of coiled light , 1987, Nature.

[20]  E. Baker,et al.  Biopolymers , 1984 .

[21]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[22]  F. B. Fuller Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[24]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[25]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[26]  J. Marko Supercoiled and braided DNA under tension , 1997 .

[27]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[28]  J. Dahlberg,et al.  Molecular biology. , 1977, Science.

[29]  P. Levy Processus stochastiques et mouvement brownien , 1948 .