Dynamic PageRank Using Evolving Teleportation

The importance of nodes in a network constantly fluctuates based on changes in the network structure as well as changes in external interest. We propose an evolving teleportation adaptation of the PageRank method to capture how changes in external interest influence the importance of a node. This framework seamlessly generalizes PageRank because the importance of a node will converge to the PageRank values if the external influence stops changing. We demonstrate the effectiveness of the evolving teleportation on the Wikipedia graph and the Twitter social network. The external interest is given by the number of hourly visitors to each page and the number of monthly tweets for each user.

[1]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[2]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[3]  Mark C. Parsons,et al.  Communicability across evolving networks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Sreenivas Gollapudi,et al.  Estimating PageRank on graph streams , 2008, PODS.

[5]  Philip S. Yu,et al.  ACM TKDD Special Issue on Knowledge Discovery for Web Intelligence , 2010, TKDD.

[6]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[7]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[8]  Luca Becchetti,et al.  Link analysis for Web spam detection , 2008, TWEB.

[9]  Richard B. Lehoucq,et al.  Dynamical Systems and Non-Hermitian Iterative Eigensolvers , 2009, SIAM J. Numer. Anal..

[10]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[11]  Serge Abiteboul,et al.  Adaptive on-line page importance computation , 2003, WWW '03.

[12]  Sebastiano Vigna,et al.  Paradoxical Effects in PageRank Incremental Computations , 2005, Internet Math..

[13]  Amy Nicole Langville,et al.  Updating pagerank with iterative aggregation , 2004, WWW Alt. '04.

[14]  Fabien Mathieu,et al.  The effect of the back button in a random walk: application for pagerank , 2004, WWW Alt. '04.

[15]  Steve Chien,et al.  Link Evolution: Analysis and Algorithms , 2004, Internet Math..

[16]  陈军,et al.  Gleich综合征一例 , 2014 .

[17]  Tamara G. Kolda,et al.  Temporal Link Prediction Using Matrix and Tensor Factorizations , 2010, TKDD.

[18]  Gene H. Golub,et al.  Three results on the PageRank vector: eigenstructure, sensitivity, and the derivative , 2007, Web Information Retrieval and Linear Algebra Algorithms.

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  T. Tsunoda,et al.  Identification and characterization of the potential promoter regions of 1031 kinds of human genes. , 2001, Genome research.

[21]  Albert-László Barabási,et al.  Collective Response of Human Populations to Large-Scale Emergencies , 2011, PloS one.

[22]  Paolo Boldi TotalRank: ranking without damping , 2005, WWW '05.

[23]  Desmond J. Higham,et al.  GeneRank: Using search engine technology for the analysis of microarray experiments , 2005, BMC Bioinformatics.

[24]  Padhraic Smyth,et al.  EventRank: a framework for ranking time-varying networks , 2005, LinkKDD '05.

[25]  Santo Fortunato,et al.  Characterizing and modeling the dynamics of online popularity , 2010, Physical review letters.

[26]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[27]  Franco Scarselli,et al.  Inside PageRank , 2005, TOIT.

[28]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[29]  Amir F. Atiya,et al.  An Empirical Comparison of Machine Learning Models for Time Series Forecasting , 2010 .