Spectrum behavior for the nonlinear fractional point reactor kinetics model

[1]  F. Mainardi Fractional Calculus , 2018, Fractional Calculus.

[2]  Gilberto Espinosa-Paredes,et al.  Fractional-space neutron point kinetics (F-SNPK) equations for nuclear reactor dynamics , 2017 .

[3]  V. Vyawahare,et al.  On the feedback stability of linear FNPK equations , 2017 .

[4]  Abdallah A. Nahla,et al.  Picard iteration and Padé approximations for stiff fractional point kinetics equations , 2017, Appl. Math. Comput..

[5]  A. Nahla Analytical solution of the fractional point kinetics equations with multi-group of delayed neutrons during start-up of a nuclear reactor , 2017 .

[6]  G. Espinosa-Paredes,et al.  Source term in the linear analysis of FNPK equations , 2016 .

[7]  A. Aboanber,et al.  A novel fractional technique for the modified point kinetics equations , 2016 .

[8]  M. Vilhena,et al.  Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method , 2016 .

[9]  Gilberto Espinosa-Paredes,et al.  Analysis of the fractional neutron point kinetics (FNPK) equation , 2016 .

[10]  Santanu Saha Ray,et al.  Numerical Analysis with Algorithms and Programming , 2016 .

[11]  A. Aboanber,et al.  Formulation of a point reactor kinetics model based on the neutron telegraph equation , 2016 .

[12]  A. Aboanber,et al.  Comment on the paper: Espinosa-Parrdes, et al., 2011. Fractional neutron point kinetics equations for nuclear reactor dynamics. Ann. Nucl. Energ. 38, 307–330 , 2016 .

[13]  S. Ray A novel method for travelling wave solutions of fractional Whitham–Broer–Kaup, fractional modified Boussinesq and fractional approximate long wave equations in shallow water , 2015 .

[14]  Mohammed Al-Smadi,et al.  A general form of the generalized Taylor's formula with some applications , 2015, Appl. Math. Comput..

[15]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[16]  A. Aboanber,et al.  A novel mathematical model for two-energy groups of the point kinetics reactor dynamics , 2014 .

[17]  Alejandro Nuñez-Carrera,et al.  Fractional neutron point kinetics equation with Newtonian temperature feedback effects , 2014 .

[18]  A. Patra,et al.  Numerical simulation for solving fractional neutron point kinetic equations using the multi-step differential transform method , 2014 .

[19]  Vishwesh A. Vyawahare,et al.  Analysis of Fractional-order Point Reactor Kinetics Model with Adiabatic Temperature Feedback for Nuclear Reactor with Subdiffusive Neutron Transport , 2014, SIMULTECH.

[20]  B. Ganapol,et al.  A highly accurate technique for the solution of the non-linear point kinetics equations , 2013 .

[21]  B. Ganapol,et al.  The solution of the point kinetics equations via converged accelerated Taylor series (CATS) , 2012 .

[22]  A. Nahla,et al.  An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects , 2011 .

[23]  Xiao-jun Yang Generalized Local Fractional Taylor's Formula with Local Fractional Derivative , 2011, 1106.2459.

[24]  G. Espinosa-Paredes,et al.  Fractional neutron point kinetics equations for nuclear reactor dynamics , 2011 .

[25]  E. Zayed,et al.  Solution of the nonlinear point nuclear reactor kinetics equations , 2010 .

[26]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[27]  A. Aboanber Exact solution for the non-linear two point kinetic model of reflected reactors , 2009 .

[28]  A. Aboanber,et al.  Computation accuracy and efficiency of a power series analytic method for two- and three- space-dependent transient problems , 2009 .

[29]  A. Aboanber,et al.  Solution of two-point kinetics equations for reflected reactors using Analytical Inversion Method (AIM) , 2009 .

[30]  E.-G. Espinosa-Martínez,et al.  Constitutive laws for the neutron density current , 2008 .

[31]  S. Momani,et al.  A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula , 2008 .

[32]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[33]  Zaid M. Odibat,et al.  Generalized Taylor's formula , 2007, Appl. Math. Comput..

[34]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .

[35]  Hossein Jafari,et al.  Adomian decomposition: a tool for solving a system of fractional differential equations , 2005 .

[36]  M. Kinard,et al.  Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics , 2004 .

[37]  A. Aboanber An efficient analytical form for the period-reactivity relation of beryllium and heavy-water moderated reactors , 2003 .

[38]  A. Aboanber,et al.  Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximations via the analytical inversion method , 2002 .

[39]  A. Aboanber,et al.  Generalization of the analytical inversion method for the solution of the point kinetics equations , 2002 .

[40]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[41]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[42]  Margarita Rivero,et al.  On a Riemann–Liouville Generalized Taylor's Formula , 1999 .

[43]  Hari M. Srivastava,et al.  The exact solution of certain differential equations of fractional order by using operational calculus , 1995 .