A note on exact minimum degree threshold for fractional perfect matchings

R\"odl, Ruci\'nski, and Szemer\'edi determined the minimum $(k-1)$-degree threshold for the existence of fractional perfect matchings in $k$-uniform hypergrahs, and K\"uhn, Osthus, and Townsend extended this result by asymptotically determining the $d$-degree threshold for the range $k-1>d\ge k/2$. In this note, we prove the following exact degree threshold: Let $k,d$ be positive integers with $k\ge 4$ and $k-1>d\geq k/2$, and let $n$ be any integer with $n\ge k^2$. Then any $n$-vertex $k$-uniform hypergraph with minimum $d$-degree $\delta_d(H)>{n-d\choose k-d} -{n-d-(\lceil n/k\rceil-1)\choose k-d}$ contains a fractional perfect matching. This lower bound on the minimum $d$-degree is best possible. We also determine optimal minimum $d$-degree conditions which guarantees the existence of fractional matchings of size $s$, where $0