Critical points: interactions between on-farm irrigation systems and water distribution network

Abstract In this work, a new model useful to analyze interactions between the on-farm irrigation system supplied by critical points and the water supply network management was developed. The model evaluates the impacts of changes in the pressure head and demand simultaneity (number of open hydrants at a given time) on the irrigation system and evaluates emitter discharge and uniformity. It also estimates the potential reductions in crop yield due to decreased emission uniformity. The methodology is applied in the Bembézar Irrigation District (Southern Spain). Results show that the additional cost required for providing maximum pressure to the critical field does not offset the increase in crop yield. Hence, an increment from 91.7 to 92.1 % in yield in the critical field would represent increases in energy consumption from 0.15 to 0.17 kWh m−3 of water. Also, the unit energy cost could be reduced by up to 0.11 kWh m−3 without implying significant reductions in crop yield. The importance of a good selection of emitters in the critical fields (fields that are supplied by the critical hydrants) was also evaluated.

[1]  Nicola Lamaddalena,et al.  Assessing Pressure Changes in an On-Demand Water Distribution System on Drip Irrigation Performance—Case Study in Italy , 2010 .

[2]  E. Camacho Poyato,et al.  Detecting Critical Points in On-Demand Irrigation Pressurized Networks – A New Methodology , 2012, Water Resources Management.

[3]  Umberto Fratino,et al.  On-farm Sprinkler Irrigation Performance as affected by the Distribution System , 2007 .

[4]  Herve Plusquellec,et al.  Modernization of large‐scale irrigation systems: is it an achievable objective or a lost cause , 2009 .

[5]  Felipe López Plan Nacional de Regadíos , 2014 .

[6]  Joan Corominas,et al.  Agua y energía en el riego, en la época de la sostenibilidad , 2010 .

[7]  José Maria Tarjuelo,et al.  Measurement and improvement of the energy efficiency at pumping stations , 2007 .

[8]  R. Clement,et al.  Calcul des dbits dans les rseaux d'irrigation fonctionnant la demande , 1966 .

[9]  M. T. Carrillo Cobo,et al.  Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks , 2011, Irrigation Science.

[10]  Helena M. Ramos,et al.  Optimization of operational planning for wind/hydro hybrid water supply systems. , 2009 .

[11]  J. de Boissezon,et al.  Calcul des débits dans les réseaux d'irrigation , 1965 .

[12]  R. López Luque,et al.  Model to Forecast Maximum Flows in On-Demand Irrigation Distribution Networks , 2007 .

[13]  Joan Corominas Masip Agua y energía en el riego, en la época de la sostenibilidad , 2010 .

[14]  P Montesinos,et al.  Impacts of irrigation network sectoring as an energy saving measure on olive grove production. , 2012, Journal of environmental management.

[15]  Inmaculada Pulido-Calvo,et al.  Water Delivery System Planning Considering Irrigation Simultaneity , 2003 .

[16]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[17]  Nicola Lamaddalena,et al.  Performance analysis of on-demand pressurized irrigation systems , 2000 .

[18]  Alberto Losada Villasante,et al.  El riego: fundamentos hidráulicos , 1988 .

[19]  E. Camacho Poyato,et al.  Quality of Service in Irrigation Distribution Networks: Case of Palos de la Frontera Irrigation District (Spain) , 2009 .

[20]  P. Montesinos,et al.  Exploring energy saving scenarios for on-demand pressurised irrigation networks , 2009 .