The 10-cages and derived configurations

Symmetry properties of the three 10-cages on 70 vertices are investigated. Being bipartite, these graphs are Levi graphs of triangle- and quadrangle-free (353) configurations. For each of these graphs a Hamilton cycle is given via the associated LCF notation. Furthermore, the automorphism groups of respective orders 80, 120, and 24 are computed. A special emphasis is given to the Balaban 10-cage, the first known example of a 10-cage (Rev. Roumaine Math. Pure Appl. 18 (1973) 1033-1043), and the corresponding Balaban configuration. It is shown that the latter is linear, that is, it can be realized as a geometric configuration of points and lines in the Euclidean plane. Finally, based on the Balaban configuration, an infinite series of linear triangle-free and quadrangle-free ((7n)3) configurations is produced for each odd integer n?5.

[1]  Roberto W. Frucht,et al.  A canonical representation of trivalent hamiltonian graphs , 1977, J. Graph Theory.

[2]  Tomaz Pisanski,et al.  Polycyclic configurations , 2003, Eur. J. Comb..

[3]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[4]  Ante Graovac,et al.  Excitation spectra for degenerate rearrangements , 1995 .

[5]  H. Coxeter Self-dual configurations and regular graphs , 1950 .

[6]  Tomaz Pisanski,et al.  Counting Symmetric Configurations v3 , 2000, Discret. Appl. Math..

[7]  Andreas E. Schroth How to draw a hexagon , 1999, Discret. Math..

[8]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[9]  Brendan D. McKay,et al.  Fast backtracking principles applied to find new cages , 1998, SODA '98.

[10]  Branko Grünbaum Astral (n 4 ) Configurations , .

[11]  Dragan Marusic,et al.  Permutation Groups, Vertex-transitive Digraphs and Semiregular Automorphisms , 1998, Eur. J. Comb..

[12]  Dragan Marusic,et al.  On vertex symmetric digraphs , 1981, Discret. Math..

[13]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[14]  Danail Bonchev,et al.  Graph Theoretical Approaches to Chemical Reactivity , 1994 .

[15]  Alan M. Frieze,et al.  Perfect Matchings in Random r-regular, s-uniform Hypergraphs , 1996, Combinatorics, Probability and Computing.

[16]  P. K. Wong On the smallest graphs of girth 10 and valency 3 , 1983, Discret. Math..

[17]  Dragan Marui On vertex symmetric digraphs , 1981 .

[18]  Markus Meringer,et al.  Fast generation of regular graphs and construction of cages , 1999, J. Graph Theory.

[19]  E. Keith Lloyd,et al.  Reaction Graphs , 1998 .

[20]  Dragan Marušič,et al.  Vertex Transitive Graphs and Digraphs of Order pK , 1985 .

[21]  Michael Giudici,et al.  Quasiprimitive Groups with No Fixed Point Free Elements of Prime Order , 2003 .

[22]  Peter J. Cameron,et al.  Transitive Permutation Groups Without Semiregular Subgroups , 2002 .

[23]  Dragan Marusic,et al.  Weakly Flag-transitive Configurations and Half-arc-transitive Graphs , 1999, Eur. J. Comb..