A fuzzy evolutionary framework for combining ensembles

[1]  Darrell Whitley,et al.  The Island Model Genetic Algorithm: On Separability, Population Size and Convergence , 2015, CIT 2015.

[2]  Athanasios Tsakonas,et al.  GRADIENT: Grammar-driven genetic programming framework for building multi-component, hierarchical predictive systems , 2012, Expert Syst. Appl..

[3]  Athanasios Tsakonas,et al.  Evolving Takagi-Sugeno-Kang Fuzzy Systems using Multi Population Grammar-Guided Genetic Programming , 2016, IJCCI.

[4]  Bogdan Gabrys,et al.  A Generic Multilevel Architecture for Time Series Prediction , 2011, IEEE Transactions on Knowledge and Data Engineering.

[5]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[6]  Huanhuan Chen,et al.  Multiobjective Neural Network Ensembles Based on Regularized Negative Correlation Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[7]  Bogdan Gabrys,et al.  Meta-learning for time series forecasting and forecast combination , 2010, Neurocomputing.

[8]  B. Gabrys,et al.  Robust predictive modelling of water pollution using biomarker data. , 2010, Water research.

[9]  Dario Izzo,et al.  On the impact of the migration topology on the Island Model , 2010, Parallel Comput..

[10]  Gao Zhihua,et al.  Noise Source Recognition Based on Two-Level Architecture Neural Network Ensemble for Incremental Learning , 2009, 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing.

[11]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[12]  Bogdan Gabrys,et al.  Architecture for development of adaptive on-line prediction models , 2009, Memetic Comput..

[13]  Mark Harman,et al.  Multi Objective Higher Order Mutation Testing with Genetic Programming , 2009, 2009 Testing: Academic and Industrial Conference - Practice and Research Techniques.

[14]  Qiang Shen,et al.  New Approaches to Fuzzy-Rough Feature Selection , 2009, IEEE Transactions on Fuzzy Systems.

[15]  Juan Julián Merelo Guervós,et al.  Genotypic differences and migration policies in an island model , 2009, GECCO.

[16]  Teresa Bernarda Ludermir,et al.  Clustering and co-evolution to construct neural network ensembles: An experimental study , 2008, Neural Networks.

[17]  Jesús Maudes,et al.  Cascading with VDM and Binary Decision Trees for Nominal Data , 2008 .

[18]  Morteza Analoui,et al.  Hierarchical two-tier ensemble learning: a new paradigm for network intrusion detection , 2007, PIKM '07.

[19]  Hisao Ishibuchi,et al.  Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions , 2007, 2007 IEEE International Fuzzy Systems Conference.

[20]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[21]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[22]  Peter Stone,et al.  Polynomial Regression with Automated Degree: A Function Approximator for Autonomous Agents , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[23]  Bo Li,et al.  Novel algorithm for constructing support vector machine regression ensemble 1 1 The project was supported by the National Natural Science Foundation of China (70572045). , 2006 .

[24]  Filippo Menczer,et al.  Optimal ensemble construction via meta-evolutionary ensembles , 2006, Expert Syst. Appl..

[25]  Xin Yao,et al.  Evolving hybrid ensembles of learning machines for better generalisation , 2006, Neurocomputing.

[26]  Athanasios Tsakonas,et al.  A comparison of classification accuracy of four genetic programming-evolved intelligent structures , 2006, Inf. Sci..

[27]  Xin Yao,et al.  Recent Advances in Evolutionary Computation , 2006, Journal of Computer Science and Technology.

[28]  Sung-Bae Cho,et al.  The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming , 2006, Artif. Intell. Medicine.

[29]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[30]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[31]  Yang Gao,et al.  Learning classifier system ensemble for data mining , 2005, GECCO '05.

[32]  Zbigniew Skolicki,et al.  An analysis of island models in evolutionary computation , 2005, GECCO '05.

[33]  Zhou Zhihua,et al.  An intelligent medical image understanding method using two-tier neural network ensembles , 2005 .

[34]  Xin Yao,et al.  Diversity creation methods: a survey and categorisation , 2004, Inf. Fusion.

[35]  Piero P. Bonissone,et al.  Unsupervised Fuzzy Ensembles and Their Use in Intrusion Detection , 2005, ESANN.

[36]  Xin Yao,et al.  DIVACE: Diverse and Accurate Ensemble Learning Algorithm , 2004, IDEAL.

[37]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[38]  Siddhartha Bhattacharyya,et al.  Genetic programming in classifying large-scale data: an ensemble method , 2004, Inf. Sci..

[39]  Leonardo Vanneschi,et al.  An Empirical Study of Multipopulation Genetic Programming , 2003, Genetic Programming and Evolvable Machines.

[40]  Ludmila I. Kuncheva,et al.  "Fuzzy" versus "nonfuzzy" in combining classifiers designed by Boosting , 2003, IEEE Trans. Fuzzy Syst..

[41]  Hyun-Chul Kim,et al.  Constructing support vector machine ensemble , 2003, Pattern Recognit..

[42]  Leonardo Vanneschi,et al.  A Study of Diversity in Multipopulation Genetic Programming , 2003, Artificial Evolution.

[43]  Xin Yao Automatic divide-and-conquer using populations and ensembles , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.

[44]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[45]  Giandomenico Spezzano,et al.  Ensemble Techniques for Parallel Genetic Programming Based Classifiers , 2003, EuroGP.

[46]  Robert P. W. Duin,et al.  The combining classifier: to train or not to train? , 2002, Object recognition supported by user interaction for service robots.

[47]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[48]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[49]  Barbara Hammer,et al.  On approximate learning by multi-layered feedforward circuits , 2000, Theor. Comput. Sci..

[50]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[51]  Noel E. Sharkey,et al.  The "Test and Select" Approach to Ensemble Combination , 2000, Multiple Classifier Systems.

[52]  D. Ruta,et al.  An Overview of Classifier Fusion Methods , 2000 .

[53]  J.Ma Troya Linero,et al.  Evolutionary design of fuzzy logic controllers using strongly-typed GP , 1999 .

[54]  David J. Montana,et al.  Strongly Typed Genetic Programming , 1995, Evolutionary Computation.

[55]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[56]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[57]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[58]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[59]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[60]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[61]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .