Constrained hypothesis testing and the Cramér-Rao bound
暂无分享,去创建一个
[1] GourierouxMonfort. Statistics and Econometric Models, Volume 2 , 1996 .
[2] T. Rothenberg. Identification in Parametric Models , 1971 .
[3] C. G. Khatri,et al. A note on a manova model applied to problems in growth curve , 1966 .
[4] Eric Moulines,et al. Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..
[5] S. D. Silvey,et al. The Lagrangian Multiplier Test , 1959 .
[6] Alain Monfort,et al. General concepts, estimation, prediction, and algorithms , 1995 .
[7] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[8] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[9] D. Sattinger,et al. Calculus on Manifolds , 1986 .
[10] John Aitchison,et al. Large‐Sample Restricted Parametric Tests , 1962 .
[11] R. F.,et al. Mathematical Statistics , 1944, Nature.
[12] J. Munkres,et al. Calculus on Manifolds , 1965 .
[13] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[14] M. Crowder. On constrained maximum likelihood estimation with non-i.i.d. observations , 1984 .
[15] J. Hosking. Lagrange Multiplier Test , 2006 .
[16] Alle-Jan van der Veen,et al. Asymptotic properties of the algebraic constant modulus algorithm , 2001, IEEE Trans. Signal Process..
[17] Brian M. Sadler,et al. The Constrained CramÉr–Rao Bound From the Perspective of Fitting a Model , 2007, IEEE Signal Processing Letters.
[18] Brian M. Sadler,et al. Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints , 2008, IEEE Transactions on Signal Processing.