A variant of environmental adaptation method with real parameter encoding and its application in economic load dispatch problem

Environmental Adaptation Method (EAM) and Improved Environmental Adaptation Method (IEAM) were proposed to solve optimization problems with the biological theory of adaptation in mind. Both of these algorithms work with binary encoding, and their performance is comparable with other state-of-art algorithms. To further improve the performance of these algorithms, some major changes are incorporated into the proposed algorithm. The proposed algorithm works with the real value parameter encoding, and, in order to maintain significant convergence rate and diversity, it maintains a balance between exploitation and exploration. The choice to explore or exploit a solution depends on the fitness of the individual. The performance of the proposed algorithm is compared with 17 state-of-art algorithms in 2-D, 3-D, 5-D, 10-D and 20-D dimensions using the COCO (COmparing Continuous Optimisers) framework with Black-Box Optimization Benchmarking (BBOB) functions. It outperforms all other algorithms in 3-D and 5-D, and its performance is comparable to other algorithms for other dimensions. In addition, IEAM-R has been applied to the real world problem of economic load dispatch, and its results demonstrate that it gives minimum fuel cost when compared to other algorithms in different cases.

[1]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[2]  T. Jayabarathi,et al.  Particle swarm optimization for various types of economic dispatch problems , 2006 .

[3]  Michèle Sebag,et al.  Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed , 2012, GECCO '12.

[4]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[5]  Marzuki Khalid,et al.  Solving economic dispatch problem using particle swarm optimization by an evolutionary technique for initializing particles , 2012 .

[6]  László Pál,et al.  A Comparison of Global Search Algorithms for Continuous Black Box Optimization , 2012, Evolutionary Computation.

[7]  N. Hansen,et al.  Real-Parameter Black-Box Optimization Benchmarking: Experimental Setup , 2010 .

[8]  Mohammed El-Abd,et al.  Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization , 2009, GECCO '09.

[9]  S. Senthilkumar,et al.  A New Approach to the Solution of Economic Dispatch Using Particle Swarm Optimization with Simulated Annealing , 2013, ArXiv.

[10]  J. Baldwin A New Factor in Evolution (Continued) , 1896, The American Naturalist.

[11]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[12]  Leandro dos Santos Coelho,et al.  Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches , 2008 .

[13]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  Shailesh Tiwari,et al.  Improved environmental adaption method and its application in test case generation , 2014, J. Intell. Fuzzy Syst..

[15]  Rémi Munos,et al.  Optimistic Optimization of Deterministic Functions , 2011, NIPS 2011.

[16]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[17]  Jason Sheng-Hong Tsai,et al.  Improving Differential Evolution With a Successful-Parent-Selecting Framework , 2015, IEEE Transactions on Evolutionary Computation.

[18]  Ying Cai,et al.  Taguchi method for solving the economic dispatch problem with nonsmooth cost functions , 2005 .

[19]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Sakti Prasad Ghoshal,et al.  A novel crazy swarm optimized economic load dispatch for various types of cost functions , 2008 .

[23]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[24]  Michèle Sebag,et al.  Alternative Restart Strategies for CMA-ES , 2012, PPSN.

[25]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[26]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[27]  Ajith Abraham,et al.  DE-PSO: A NEW HYBRID META-HEURISTIC FOR SOLVING GLOBAL OPTIMIZATION PROBLEMS , 2011 .

[28]  Melanie Moses,et al.  Benchmarking cellular genetic algorithms on the BBOB noiseless testbed , 2013, GECCO.

[29]  José García-Nieto,et al.  Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators , 2009, GECCO '09.

[30]  Anne Auger,et al.  Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed , 2013, GECCO.

[31]  Petr Posík,et al.  JADE, an adaptive differential evolution algorithm, benchmarked on the BBOB noiseless testbed , 2012, GECCO '12.

[32]  Lixin Tang,et al.  Differential Evolution With an Individual-Dependent Mechanism , 2015, IEEE Transactions on Evolutionary Computation.

[33]  Ying Lin,et al.  Particle Swarm Optimization With an Aging Leader and Challengers , 2013, IEEE Transactions on Evolutionary Computation.

[34]  Martin Holena,et al.  Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed , 2015, GECCO.

[35]  Shailesh Tiwari,et al.  A bio inspired algorithm for solving optimization problems , 2011, 2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011).

[36]  Ilya Loshchilov,et al.  CMA-ES with restarts for solving CEC 2013 benchmark problems , 2013, 2013 IEEE Congress on Evolutionary Computation.

[37]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[38]  Petr Posík,et al.  Benchmarking the differential evolution with adaptive encoding on noiseless functions , 2012, GECCO '12.

[39]  Petros Koumoutsakos,et al.  Local Meta-models for Optimization Using Evolution Strategies , 2006, PPSN.

[40]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[41]  Shailesh Tiwari,et al.  Improved Environmental Adaption Method for Solving Optimization Problems , 2012, ISICA.

[42]  Nikolaus Hansen,et al.  Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.

[43]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[44]  László Pál,et al.  Benchmarking a hybrid multi level single linkagealgorithm on the bbob noiseless testbed , 2013, GECCO.

[45]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[46]  Zwe-Lee Gaing,et al.  Particle swarm optimization to solving the economic dispatch considering the generator constraints , 2003 .

[47]  P. K. Chattopadhyay,et al.  Evolutionary programming techniques for economic load dispatch , 2003, IEEE Trans. Evol. Comput..

[48]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[49]  Ingo Rechenberg,et al.  Evolution Strategy: Nature’s Way of Optimization , 1989 .

[50]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[51]  Michèle Sebag,et al.  Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.

[52]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[53]  Achala Jain,et al.  A Traditional Approach to Solve Economic Load Dispatch Problem Considering the Generator Constraints , 2015 .