Alpha 1-adrenergic blockade does not alter control of skin blood flow during exercise.

Human skin blood flow (SkBF) is controlled by both an alpha-adrenergic vasoconstrictor system and an active vasodilator system. During upright dynamic exercise, SkBF increases linearly with increasing body core temperature (Tc) until higher (i.e., greater than 38 degrees C) Tcs, beyond which little further increase in SkBF occurs. To examine the role of the two efferent control arms in this attenuated SkBF rise, we tested nine men (aged 25-53 yr) with and without (placebo) orally administered prazosin HCl (an alpha 1-adrenergic antagonist) during 1 h of moderate cycle exercise (100 W) in a warm (36 degrees C, 45% relative humidity) environment. Blockade of reflex vasoconstriction was verified via a cold challenge. During exercise, mean arterial pressure (MAP, brachial auscultation) was significantly lower (P less than 0.03) and heart rate significantly higher (P less than 0.02) during the prazosin trials; plasma catecholamine concentrations were unaffected. Neither esophageal temperature (Tes) nor mean skin temperature was affected by the drug during exercise. Forearm vascular conductance (FVC) was calculated from forearm blood flow (FBF, venous occlusion plethysmography) and MAP (FVC = FBF/MAP). FVC plotted as a function of time or Tes resulted in coincident response patterns for the placebo and prazosin treatments, reaching a plateau at a Tes of about 38 degrees C. The responses of the older men were not selectively altered by prazosin treatment, indicating that the lower FBF responses previously seen in older subjects during exercise in the heat does not appear to be the result of an increased alpha 1-adrenergic tone.(ABSTRACT TRUNCATED AT 250 WORDS)