Singular Trajectories of Control-Affine Systems

When applying methods of optimal control to motion planning or stabilization problems, we see that some theoretical or numerical difficulties may arise, due to the presence of specific trajectories, namely, minimizing singular trajectories of the underlying optimal control problem. In this article, we provide characterizations for singular trajectories of control-affine systems. We prove that, under generic assumptions, such trajectories share nice properties, related to computational aspects; more precisely, we show that, for a generic system—with respect to the Whitney topology—all nontrivial singular trajectories are of minimal order and of corank one. These results, established both for driftless and for control-affine systems, extend results of [Y. Chitour, F. Jean, and E. Trelat, Comptes Rendus Math., 337 (2003), pp. 49-52 (in French); Y. Chitour, F. Jean, and E. Trelat, J. Differential Geom., 73 (2006), pp. 45-73]. As a consequence, for generic control-affine systems (with or without drift) defined by more than two vector fields, and for a fixed cost, there do not exist minimizing singular trajectories. Besides, we prove that, given a control-affine system satisfying the Lie algebra rank condition (LARC), singular trajectories are strictly abnormal, generically with respect to the cost. We then show how these results can be used to derive regularity results for the value function and in the theory of Hamilton-Jacobi equations, which in turn have applications for stabilization and motion planning, from both theoretical and implementational points of view.

[1]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[2]  Ludovic Rifford,et al.  The Stabilization Problem: AGAS and SRS Feedbacks , 2005 .

[3]  A. Agrachev,et al.  A. Agrachev COMPACTNESS FOR SUB-RIEMANNIAN LENGTH-MINIMIZERS AND SUBANALYTICITY , 1999 .

[4]  Frédéric Jean,et al.  Propriétés génériques des trajectoires singulières , 2003 .

[5]  Jean-Paul Gauthier,et al.  ON THE SUBANALYTICITY OF CARNOT-CARATHEODORY DISTANCES , 2001 .

[6]  Emmanuel Trélat,et al.  Morse-Sard type results in sub-Riemannian geometry , 2005 .

[7]  Bernard Bonnard,et al.  Generic properties of singular trajectories , 1997 .

[8]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[9]  R. Montgomery Abnormal Minimizers , 1994 .

[10]  Emmanuel Trélat,et al.  Solutions sous-analytiques globales de certaines quations d'Hamilton?JacobiGlobal subanalytic solutions of Hamilton?Jacobi type equations , 2003 .

[11]  A V Saryčev,et al.  THE INDEX OF THE SECOND VARIATION OF A CONTROL SYSTEM , 1982 .

[12]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[13]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[14]  E. Trélat,et al.  Genericity results for singular curves , 2006 .

[15]  L. Young Lectures on the Calculus of Variations and Optimal Control Theory , 1980 .

[16]  Ludovic Rifford,et al.  On the existence of local smooth repulsive stabilizing feedbacks in dimension three , 2006 .

[17]  Emmanuel Trélat,et al.  Quasi-Optimal Robust Stabilization of Control Systems , 2006, SIAM J. Control. Optim..

[18]  Bernard Bonnard,et al.  Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal , 1993 .

[19]  Andrei A. Agrachev,et al.  On Abnormal Extremals for Lagrange Variational Problems , 1995 .

[20]  P. Lions Generalized Solutions of Hamilton-Jacobi Equations , 1982 .

[21]  F. Jean,et al.  Propri´ et´ es g´ en´ eriques des trajectoires singuli` eres , 2003 .

[22]  Emmanuel Tr'elat Asymptotics of accessibility sets along an abnormal trajectory , 2001 .

[23]  Emmanuel Trélat,et al.  Some Properties of the Value Function and Its Level Sets for Affine Control Systems with Quadratic Cost , 2000, math/0607424.

[24]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[25]  H. J. Pesch A Practical Guide to the Solution of Real-Life Optimal Control Problems , 1994 .

[26]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[27]  Martin Tamm,et al.  Subanalytic sets in the calculus of variation , 1981 .

[28]  Andrei A. Agrachev,et al.  Strong minimality of abnormal geodesics for 2-distributions , 1995 .

[29]  A. Agrachev,et al.  Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity , 1999 .