Expanding room for tetrazine ligations in the in vivo chemistry toolbox.

[1]  M. Wuest,et al.  Synthesis and evaluation of an 18F-labelled norbornene derivative for copper-free click chemistry reactions. , 2013, Organic & biomolecular chemistry.

[2]  K. Brindle,et al.  Metabolic Glycan Imaging by Isonitrile–Tetrazine Click Chemistry , 2013, Chembiochem : a European journal of chemical biology.

[3]  G. Knudsen,et al.  Development of a (11)C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation. , 2013, Chemical communications.

[4]  W. Reutter,et al.  Two-color glycan labeling of live cells by a combination of Diels-Alder and click chemistry. , 2013, Angewandte Chemie.

[5]  J. Haun,et al.  Bioorthogonal chemistries for nanomaterial conjugation and targeting , 2013 .

[6]  N. Devaraj,et al.  Fluorescent Live‐Cell Imaging of Metabolically Incorporated Unnatural Cyclopropene‐Mannosamine Derivatives , 2013, Chembiochem : a European journal of chemical biology.

[7]  Jennifer A. Prescher,et al.  Functionalized cyclopropenes as bioorthogonal chemical reporters. , 2012, Journal of the American Chemical Society.

[8]  Fang Liu,et al.  Control and design of mutual orthogonality in bioorthogonal cycloadditions. , 2012, Journal of the American Chemical Society.

[9]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[10]  E. Lemke,et al.  Genetic Encoding of a Bicyclo[6.1.0]nonyne‐Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal‐Free Ligation , 2012, Chembiochem : a European journal of chemical biology.

[11]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[12]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[13]  Mark R. Karver,et al.  Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. , 2012, Angewandte Chemie.

[14]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[15]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[16]  Greg M. Thurber,et al.  Reactive polymer enables efficient in vivo bioorthogonal chemistry , 2012, Proceedings of the National Academy of Sciences.

[17]  R. Weissleder,et al.  Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. , 2012, Neoplasia.

[18]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[19]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[20]  Michael T. Taylor,et al.  Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. , 2012, Journal of the American Chemical Society.

[21]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[22]  R. Weissleder,et al.  Modular Strategy for the Construction of Radiometalated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels–Alder Click Chemistry , 2011, Bioconjugate chemistry.

[23]  C. Bertozzi,et al.  From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions , 2011, Accounts of chemical research.

[24]  Michael T. Taylor,et al.  Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. , 2011, Journal of the American Chemical Society.

[25]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[26]  R. Weissleder,et al.  High‐Yielding, Two‐Step 18F Labeling Strategy for 18F‐PARP1 Inhibitors , 2011, ChemMedChem.

[27]  R. Weissleder,et al.  Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. , 2011, Angewandte Chemie.

[28]  P. Conti,et al.  Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. , 2010, Chemical communications.

[29]  R. Rossin,et al.  In vivo chemistry for pretargeted tumor imaging in live mice. , 2010, Angewandte Chemie.

[30]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[31]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[32]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[33]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[34]  C. Meares,et al.  Advances in pretargeting biotechnology. , 2001, Biotechnology advances.

[35]  A. Wu Tools for pretargeted radioimmunotherapy. , 2001, Cancer biotherapy & radiopharmaceuticals.