Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation
暂无分享,去创建一个
Meng Li | Dongyang Shi | Wanyuan Ming | Junjun Wang | M. Li | D. Shi | Junjun Wang | W. Ming
[1] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[2] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[3] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[4] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[5] Xiang Xinmin,et al. Spectral method for solving the system of equations of Schro¨dinger-Klein-Gordon field , 1988 .
[6] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[7] Yongzhong Song,et al. A new local energy-preserving algorithm for the BBM equation , 2018, Appl. Math. Comput..
[8] Meng Li,et al. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..
[9] Yanzhi Zhang,et al. Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation , 2016, Comput. Math. Appl..
[10] D. Shi. Unconditionally Superclose Analysis of a New Mixed Finite Element Method for Nonlinear Parabolic Equation , 2019, Journal of Computational Mathematics.
[11] Dongyang Shi,et al. Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations , 2017, Comput. Math. Appl..
[12] Shanshan Jiang,et al. Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations , 2009, J. Comput. Phys..
[13] Xiaofei Zhao,et al. Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions , 2018, Adv. Comput. Math..
[14] Chengming Huang,et al. A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations , 2019, Numerical Algorithms.
[15] Dongyang Shi,et al. Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .
[16] Dongyang Shi,et al. Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations , 2016, Comput. Math. Appl..
[17] Yushun Wang,et al. Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein–Gordon–Schrödinger equations , 2018, Journal of Mathematical Analysis and Applications.
[18] L. Kong,et al. New energy-preserving schemes for Klein–Gordon–Schrödinger equations , 2016 .
[19] Mitchell Luskin,et al. A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .
[20] Meng Li,et al. A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator , 2018, Appl. Math. Comput..
[21] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[22] Mingliang Wang,et al. The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .
[23] Luming Zhang,et al. A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations , 2008, Appl. Math. Comput..
[24] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[25] Masahito Ohta,et al. Stability of stationary states for the coupled Klein-Gordon-Schro¨dinger equations , 1996 .
[26] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..
[27] Weiwei Sun,et al. Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..
[28] Yunqing Huang,et al. The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .
[29] Jr. H. H. Rachford. Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .
[30] Weiwei Sun,et al. A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..
[31] Boling Guo,et al. Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations , 1995 .
[32] Tingchun Wang,et al. Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation , 2014 .
[33] Qi Wang,et al. A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..
[34] L. Gauckler. Numerical long-time energy conservation for the nonlinear Schrödinger equation , 2016 .
[35] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[36] Dongfang Li,et al. Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System , 2017, J. Sci. Comput..
[37] Chengming Huang,et al. Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation , 2018 .
[38] D. Shi,et al. Unconditional superconvergence analysis of an H1‐galerkin mixed finite element method for nonlinear Sobolev equations , 2018 .
[39] BIYUE LIU,et al. The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[40] Li Yang,et al. Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..
[41] L. Vu-Quoc,et al. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .
[42] Meng Li,et al. Galerkin finite element method for nonlinear fractional Schrödinger equations , 2017, Numerical Algorithms.
[43] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .