Unconditional superconvergence analysis of the conservative linearized Galerkin FEMs for nonlinear Klein-Gordon-Schrödinger equation

Abstract In this paper, we propose the conservative linearized Galerkin finite element methods (FEMs) for the nonlinear Klein-Gordon-Schrodinger equation (KGSE) with homogeneous boundary conditions. The constructed schemes conserve not only the discrete mass but also the discrete energy. By splitting the error into the temporal error and the spatial error, the unconditional superconvergence results are deduced. On the one hand, based on the detailed investigation of the temporal errors skillfully, the regularity of the time-discrete systems is presented. On the other hand, the spatial errors with the scale of O ( h 2 ) in L 2 − norm are derived by applying the classical Ritz projection, which are τ−independent with the above achievements. Then, the superclose estimates with order O ( h 2 + τ 2 ) in the sense of H 1 − norm are arrived at by virtue of the relationship between the Ritz projection and the interpolation. Moreover, the global superconvergence properties are obtained through the interpolated postprocessing technique. Finally, numerical examples are given to test the theoretical results. Here, h and τ denote the subdivision parameter and the time step, respectively.

[1]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[2]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[3]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[4]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[5]  Xiang Xinmin,et al.  Spectral method for solving the system of equations of Schro¨dinger-Klein-Gordon field , 1988 .

[6]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[7]  Yongzhong Song,et al.  A new local energy-preserving algorithm for the BBM equation , 2018, Appl. Math. Comput..

[8]  Meng Li,et al.  A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..

[9]  Yanzhi Zhang,et al.  Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation , 2016, Comput. Math. Appl..

[10]  D. Shi Unconditionally Superclose Analysis of a New Mixed Finite Element Method for Nonlinear Parabolic Equation , 2019, Journal of Computational Mathematics.

[11]  Dongyang Shi,et al.  Unconditional superconvergence analysis of a linearized Galerkin FEM for nonlinear hyperbolic equations , 2017, Comput. Math. Appl..

[12]  Shanshan Jiang,et al.  Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations , 2009, J. Comput. Phys..

[13]  Xiaofei Zhao,et al.  Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions , 2018, Adv. Comput. Math..

[14]  Chengming Huang,et al.  A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations , 2019, Numerical Algorithms.

[15]  Dongyang Shi,et al.  Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .

[16]  Dongyang Shi,et al.  Superconvergence analysis of an H1-Galerkin mixed finite element method for Sobolev equations , 2016, Comput. Math. Appl..

[17]  Yushun Wang,et al.  Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein–Gordon–Schrödinger equations , 2018, Journal of Mathematical Analysis and Applications.

[18]  L. Kong,et al.  New energy-preserving schemes for Klein–Gordon–Schrödinger equations , 2016 .

[19]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .

[20]  Meng Li,et al.  A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator , 2018, Appl. Math. Comput..

[21]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[22]  Mingliang Wang,et al.  The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .

[23]  Luming Zhang,et al.  A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations , 2008, Appl. Math. Comput..

[24]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[25]  Masahito Ohta,et al.  Stability of stationary states for the coupled Klein-Gordon-Schro¨dinger equations , 1996 .

[26]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[27]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[28]  Yunqing Huang,et al.  The full-discrete mixed finite element methods for nonlinear hyperbolic equations , 1998 .

[29]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[30]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[31]  Boling Guo,et al.  Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations , 1995 .

[32]  Tingchun Wang,et al.  Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation , 2014 .

[33]  Qi Wang,et al.  A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation , 2017, J. Comput. Phys..

[34]  L. Gauckler Numerical long-time energy conservation for the nonlinear Schrödinger equation , 2016 .

[35]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[36]  Dongfang Li,et al.  Unconditionally Optimal Error Analysis of Crank–Nicolson Galerkin FEMs for a Strongly Nonlinear Parabolic System , 2017, J. Sci. Comput..

[37]  Chengming Huang,et al.  Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation , 2018 .

[38]  D. Shi,et al.  Unconditional superconvergence analysis of an H1‐galerkin mixed finite element method for nonlinear Sobolev equations , 2018 .

[39]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[40]  Li Yang,et al.  Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..

[41]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[42]  Meng Li,et al.  Galerkin finite element method for nonlinear fractional Schrödinger equations , 2017, Numerical Algorithms.

[43]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .