Bayesian Restricted Likelihood Methods
暂无分享,去创建一个
[1] L. M. M.-T.. Theory of Probability , 1929, Nature.
[2] J. I. The Design of Experiments , 1936, Nature.
[3] J. Tukey. A survey of sampling from contaminated distributions , 1960 .
[4] Bruno De Finetti,et al. The Bayesian Approach to the Rejection of Outliers , 1961 .
[5] D. Cox,et al. An Analysis of Transformations , 1964 .
[6] John W. Pratt,et al. Bayesian Interpretation of Standard Inference Statements , 1965 .
[7] G. C. Tiao,et al. A bayesian approach to some outlier problems. , 1968, Biometrika.
[8] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[9] J. Dickey. The Weighted Likelihood Ratio, Linear Hypotheses on Normal Location Parameters , 1971 .
[10] A. Dawid. Posterior expectations for large observations , 1973 .
[11] S. Stigler. Do Robust Estimators Work with Real Data , 1977 .
[12] A. O'Hagan,et al. On Outlier Rejection Phenomena in Bayes Inference , 1979 .
[13] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[14] George E. P. Box,et al. Sampling and Bayes' inference in scientific modelling and robustness , 1980 .
[15] Lennart S. Rhodin,et al. Robust Estimation of Location Using Optimally Chosen Sample Quantiles , 1980 .
[16] Anthony N. Pettitt,et al. Inference for the Linear Model Using a Likelihood Based on Ranks , 1982 .
[17] A. Pettitt. Likelihood based Inference using Signed Ranks for Matched Pairs , 1983 .
[18] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[19] L. Tierney,et al. Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .
[20] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[21] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[22] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[23] L. Tierney,et al. Fully Exponential Laplace Approximations to Expectations and Variances of Nonpositive Functions , 1989 .
[24] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[25] Albert Y. Lo,et al. Consistent and Robust Bayes Procedures for Location Based on Partial Information , 1990 .
[26] Anthony O'Hagan,et al. Outliers and Credence for Location Parameter Inference , 1990 .
[27] L. Wasserman,et al. Bayesian analysis of outlier problems using the Gibbs sampler , 1991 .
[28] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[29] Adi Ben-Israel,et al. On principal angles between subspaces in Rn , 1992 .
[30] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[31] Roger Ratcliff,et al. Methods for Dealing With Reaction Time Outliers , 1992 .
[32] M. C. Jones,et al. Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .
[33] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[34] A. Gelfand,et al. Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .
[35] M. Wand,et al. Multivariate plug-in bandwidth selection , 1994 .
[36] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[37] Posterior convergence given the mean , 1995 .
[38] L. Wasserman,et al. A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .
[39] L. Wasserman,et al. Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .
[40] D. Madigan,et al. A method for simultaneous variable selection and outlier identification in linear regression , 1996 .
[41] Daniel Peña,et al. Gibbs Sampling Will Fail in Outlier Problems with Strong Masking , 1996 .
[42] Elvezio Ronchetti,et al. Robust Linear Model Selection by Cross-Validation , 1997 .
[43] A. Raftery,et al. Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .
[44] P. Donnelly,et al. Inferring coalescence times from DNA sequence data. , 1997, Genetics.
[45] D. Madigan,et al. Bayesian Model Averaging for Linear Regression Models , 1997 .
[46] S. Normand,et al. TUTORIAL IN BIOSTATISTICS META-ANALYSIS : FORMULATING , EVALUATING , COMBINING , AND REPORTING , 1999 .
[47] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[48] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[49] Mario Peruggia,et al. Importance Link Function Estimation for Markov Chain Monte Carlo Methods , 2000 .
[50] Philip H. Ramsey. Nonparametric Statistical Methods , 1974, Technometrics.
[51] A. Justel,et al. Bayesian unmasking in linear models , 2001 .
[52] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[53] M. Hazelton,et al. Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .
[54] Christina Gloeckner,et al. Modern Applied Statistics With S , 2003 .
[55] Prem K. Kythe,et al. Handbook of Computational Methods for Integration , 2004 .
[56] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[57] Bertrand Clarke,et al. Asymptotic normality of the posterior given a statistic , 2004 .
[58] M. Hazelton,et al. Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation , 2005 .
[59] On limiting posterior distributions , 2005 .
[60] A. O'Hagan,et al. Statistical Methods for Eliciting Probability Distributions , 2005 .
[61] Tong Zhang. From ɛ-entropy to KL-entropy: Analysis of minimum information complexity density estimation , 2006, math/0702653.
[62] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[63] Tony O’Hagan. Bayes factors , 2006 .
[64] J. Berger. The case for objective Bayesian analysis , 2006 .
[65] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[66] M. Tanner,et al. Gibbs posterior for variable selection in high-dimensional classification and data mining , 2008, 0810.5655.
[67] Laura Ventura,et al. Robust likelihood functions in Bayesian inference , 2008 .
[68] Keith O'Rourke,et al. The combining of information: Investigating and synthesizing what is possibly common in clinical observations or studies via likelihood. , 2008 .
[69] M. Clyde,et al. Mixtures of g Priors for Bayesian Variable Selection , 2008 .
[70] Paul Marjoram,et al. Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .
[71] Walter W Piegorsch,et al. Combining information. , 2009, Wiley interdisciplinary reviews. Computational statistics.
[72] John K Kruschke,et al. Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.
[73] Paul Fearnhead,et al. Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic ABC , 2010, 1004.1112.
[74] William Francis Darnieder. Bayesian Methods for Data-Dependent Priors , 2011 .
[75] Anthony O'Hagan,et al. Bayesian heavy-tailed models and conflict resolution: A review , 2012 .
[76] John Lewis,et al. Robust Inference via the Blended Paradigm , 2012 .
[77] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[78] R. Kay. The Analysis of Survival Data , 2012 .
[79] Peter D. Hoff,et al. Likelihoods for fixed rank nomination networks , 2012, Network Science.
[80] Full Robustness in Bayesian Modelling of a Scale Parameter , 2013 .
[81] Angela M. Dean,et al. Design and analysis of experiment , 2013 .
[82] Juhee Lee,et al. Inference functions in high dimensional Bayesian inference , 2014 .
[83] Pier Giovanni Bissiri,et al. A general framework for updating belief distributions , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.