Network analysis of protein structures identifies functional residues.

[1]  C. Cori,et al.  THE ROLE OF ADENYLIC ACID IN THE ACTIVATION OF PHOSPHORYLASE. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. A. Beauchamp AN IMPROVED INDEX OF CENTRALITY. , 1965, Behavioral science.

[3]  G. Sabidussi The centrality of a graph. , 1966, Psychometrika.

[4]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[5]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[6]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[7]  Shneior Lifson,et al.  Antiparallel and parallel β-strands differ in amino acid residue preferences , 1979, Nature.

[8]  C. Sander,et al.  Antiparallel and parallel beta-strands differ in amino acid residue preferences. , 1979, Nature.

[9]  M J Sternberg,et al.  Analysis and prediction of the location of catalytic residues in enzymes. , 1988, Protein engineering.

[10]  L. Johnson,et al.  The allosteric transition of glycogen phosphorylase , 1989, Nature.

[11]  Marianne Manchester,et al.  Complete mutagenesis of the HIV-1 protease , 1989, Nature.

[12]  C. Slaughter,et al.  An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. , 1990, Science.

[13]  J. Maller,et al.  Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase , 1990, Nature.

[14]  M. Cobb,et al.  Extracellular signal-regulated kinases: ERKs in progress. , 1991, Cell regulation.

[15]  A. Goldman,et al.  Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein , 1991, Science.

[16]  S. Bouvier,et al.  Systematic mutation of bacteriophage T4 lysozyme. , 1991, Journal of molecular biology.

[17]  L. Johnson,et al.  Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. , 1992, Journal of molecular biology.

[18]  L. Freeman,et al.  Centrality in valued graphs: A measure of betweenness based on network flow , 1991 .

[19]  E. Krebs,et al.  Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. , 1991, The Journal of biological chemistry.

[20]  C. Crews,et al.  The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. , 1992, Science.

[21]  Amos Bairoch,et al.  The ENZYME data bank , 1993, Nucleic Acids Res..

[22]  C Cruz,et al.  Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. , 1994, Journal of molecular biology.

[23]  Elizabeth J. Goldsmith,et al.  Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution , 1994, Nature.

[24]  T C Terwilliger,et al.  In vivo characterization of mutants of the bacteriophage f1 gene V protein isolated by saturation mutagenesis. , 1994, Journal of molecular biology.

[25]  C. Sander,et al.  A method to predict functional residues in proteins , 1995, Nature Structural Biology.

[26]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[27]  S. Henikoff,et al.  Automated construction and graphical presentation of protein blocks from unaligned sequences. , 1995, Gene.

[28]  P. Taylor,et al.  Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex , 1995, Cell.

[29]  Peter S. Shenkin,et al.  Amino Acid Sequence Determinants of β-Lactamase Structure and Activity , 1996 .

[30]  M. Swindells,et al.  Protein clefts in molecular recognition and function. , 1996, Protein science : a publication of the Protein Society.

[31]  J. Petrosino,et al.  Amino acid sequence determinants of beta-lactamase structure and activity. , 1996, Journal of molecular biology.

[32]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[33]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[34]  Elizabeth J. Goldsmith,et al.  Activation Mechanism of the MAP Kinase ERK2 by Dual Phosphorylation , 1997, Cell.

[35]  John P. Overington,et al.  HOMSTRAD: A database of protein structure alignments for homologous families , 1998, Protein science : a publication of the Protein Society.

[36]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[37]  K S Wilson,et al.  Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg. , 1998, European journal of biochemistry.

[38]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[39]  A. Fersht,et al.  A search for single substitutions that eliminate enzymatic function in a bacterial ribonuclease. , 1998, Biochemistry.

[40]  S. Vishveshwara,et al.  Identification of side-chain clusters in protein structures by a graph spectral method. , 1999, Journal of molecular biology.

[41]  Jaime Prilusky,et al.  Automated analysis of interatomic contacts in proteins , 1999, Bioinform..

[42]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[43]  N. Ariel,et al.  Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. , 2000, Acta crystallographica. Section D, Biological crystallography.

[44]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[45]  L. Johnson,et al.  A new allosteric site in glycogen phosphorylase b as a target for drug interactions. , 2000, Structure.

[46]  J L Sussman,et al.  Three‐dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors , 2000, Protein science : a publication of the Protein Society.

[47]  D. Axe,et al.  Extreme functional sensitivity to conservative amino acid changes on enzyme exteriors. , 2000, Journal of molecular biology.

[48]  M. Sternberg,et al.  Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. , 2001, Journal of molecular biology.

[49]  N. Ben-Tal,et al.  ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. , 2001, Journal of molecular biology.

[50]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[51]  Cation-dependent stability of subtilisin. , 2001, Biochemistry.

[52]  M. Ondrechen,et al.  THEMATICS: A simple computational predictor of enzyme function from structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Eisenberg,et al.  Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. , 2001, Journal of molecular biology.

[54]  S. Strogatz Exploring complex networks , 2001, Nature.

[55]  A. Elcock Prediction of functionally important residues based solely on the computed energetics of protein structure. , 2001, Journal of molecular biology.

[56]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[57]  M Karplus,et al.  Small-world view of the amino acids that play a key role in protein folding. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  E. Shakhnovich,et al.  Topological determinants of protein folding , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Martin Suter,et al.  Small World , 2002 .

[60]  Gail J. Bartlett,et al.  Analysis of catalytic residues in enzyme active sites. , 2002, Journal of molecular biology.

[61]  Tamotsu Noguchi,et al.  PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003 , 2003, Nucleic Acids Res..

[62]  Gail J. Bartlett,et al.  Using a neural network and spatial clustering to predict the location of active sites in enzymes. , 2003, Journal of molecular biology.

[63]  D. Fischer,et al.  Analysis of singleton ORFans in fully sequenced microbial genomes , 2003, Proteins.

[64]  Victoria A. Higman,et al.  Uncovering network systems within protein structures. , 2003, Journal of molecular biology.

[65]  Ashish V. Tendulkar,et al.  Functional sites in protein families uncovered via an objective and automated graph theoretic approach. , 2003, Journal of molecular biology.

[66]  Tal Pupko,et al.  Structural Genomics , 2005 .

[67]  A. Atilgan,et al.  Small-world communication of residues and significance for protein dynamics. , 2003, Biophysical journal.

[68]  Daniel Fischer,et al.  The ORFanage: an ORFan database , 2004, Nucleic Acids Res..

[69]  J. Thornton,et al.  Searching for functional sites in protein structures. , 2004, Current opinion in chemical biology.