Some Logical Characterizations of the Dot-Depth Hierarchy and Applications
暂无分享,去创建一个
[1] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[2] F. Blanchet-Sadri,et al. Equations and dot-depth one , 1993 .
[3] Richard E. Ladner,et al. Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..
[4] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[5] Robert McNaughton,et al. Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .
[6] Janusz A. Brzozowski,et al. Characterizations of locally testable events , 1973, Discret. Math..
[7] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories , 1961 .
[8] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[9] S C Kleene,et al. Representation of Events in Nerve Nets and Finite Automata , 1951 .
[10] Howard Straubing,et al. Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..
[11] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[12] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[13] Francine Blanchet-Sadri,et al. On dot-depth two , 1990, RAIRO Theor. Informatics Appl..
[14] Siew Hoon Sing. Categories in algebra , 1997 .
[15] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[16] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[17] Howard Straubing. Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.
[18] R. McNaughton,et al. Counter-Free Automata , 1971 .
[19] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[20] Christophe Reutenauer,et al. Sur les variétés de langages et de monoídes , 1979, Theoretical Computer Science.
[21] Jean-Éric Pin. Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..
[22] Francine Blanchet-Sadri,et al. Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..
[23] Howard Straubing,et al. A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..
[24] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[25] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[26] G. Lallement. Semigroups and combinatorial applications , 1979 .
[27] Francine Blanchet-Sadri,et al. Games, equations and the dot-depth hierarchy , 1989 .
[28] C. C. Elgot. Decision problems of finite automata design and related arithmetics , 1961 .
[29] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[30] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .