Some Logical Characterizations of the Dot-Depth Hierarchy and Applications

A logical characterization of natural subhierarchies of the dot-depth hierarchy refining a theorem of Thomas and a congruence characterization related to a version of the Ehrenfeucht-Fra??sse game generalizing a theorem of Simon are given. For a sequence m=(m1, ..., mk) of positive integers, subclasses L(m1, ..., mk) of languages of level k are defined. L(m1, ..., mk) are shown to be decidable. Some properties of the characterizing congruences are studied, among them, a condition which insures L(m1, ..., mk) to be included in L(m?1, ..., m?k?). A conjecture of Pin concerning tree hierarchies of monoids (the dot-depth being a particular case) is shown to be false.

[1]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[2]  F. Blanchet-Sadri,et al.  Equations and dot-depth one , 1993 .

[3]  Richard E. Ladner,et al.  Application of Model Theoretic Games to Discrete Linear Orders and Finite Automata , 1977, Inf. Control..

[4]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[5]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[6]  Janusz A. Brzozowski,et al.  Characterizations of locally testable events , 1973, Discret. Math..

[7]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[8]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[9]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[10]  Howard Straubing,et al.  Semigroups and Languages of Dot-Depth Two , 1988, Theor. Comput. Sci..

[11]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[12]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[13]  Francine Blanchet-Sadri,et al.  On dot-depth two , 1990, RAIRO Theor. Informatics Appl..

[14]  Siew Hoon Sing Categories in algebra , 1997 .

[15]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[16]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[17]  Howard Straubing Semigroups and Languages of Dot-Depth 2 , 1986, ICALP.

[18]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[19]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[20]  Christophe Reutenauer,et al.  Sur les variétés de langages et de monoídes , 1979, Theoretical Computer Science.

[21]  Jean-Éric Pin Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..

[22]  Francine Blanchet-Sadri,et al.  Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..

[23]  Howard Straubing,et al.  A Generalization of the Schützenberger Product of Finite Monoids , 1981, Theor. Comput. Sci..

[24]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[25]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[26]  G. Lallement Semigroups and combinatorial applications , 1979 .

[27]  Francine Blanchet-Sadri,et al.  Games, equations and the dot-depth hierarchy , 1989 .

[28]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[29]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[30]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .