Radial symmetry of solution for fractional p−Laplacian system

Abstract In this paper, we investigate the method of moving planes for fractional p -Laplacian system. We firstly discuss the key ingredients for the method of moving planes such as maximum principle for anti-symmetric functions, decay at infinity and boundary estimate. Then we apply the method of moving planes to establish the radial symmetry and the monotonicity of the positive solutions for fractional p − Laplacian system in a unit ball or in the whole space.

[1]  Xuewei Cui,et al.  Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian , 2015 .

[2]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[3]  Yonggang Chen,et al.  Symmetry and non-existence of positive solutions for fractional p-Laplacian systems , 2019, Nonlinear Analysis.

[4]  Luis Silvestre,et al.  Regularity theory for fully nonlinear integro‐differential equations , 2007, 0709.4681.

[5]  E. Lieb,et al.  Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality , 2009, 0904.4275.

[6]  Wenxiong Chen,et al.  Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions , 2016, Calculus of Variations and Partial Differential Equations.

[7]  L. Montoro,et al.  The moving plane method for singular semilinear elliptic problems , 2016, 1607.08395.

[8]  Tobias Weth,et al.  Symmetry via antisymmetric maximum principles in nonlocal problems of variable order , 2014, 1406.6181.

[9]  B. Sciunzi On the moving plane method for singular solutions to semilinear elliptic equations , 2017 .

[10]  Li Ma,et al.  Moving planes for nonlinear fractional Laplacian equation with negative powers , 2018 .

[11]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[12]  Congming Li,et al.  Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy–Littlewood–Sobolev system of integral equations , 2012 .

[13]  Tianling Jin,et al.  On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions , 2011, 1111.1332.

[14]  Zhanbing Bai,et al.  Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation , 2019, Appl. Math. Lett..

[15]  Wenxiong Chen,et al.  A Liouville type theorem for poly-harmonic Dirichlet problems in a half space , 2012 .

[16]  Rupert L. Frank,et al.  Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R , 2013 .

[17]  Li Ma,et al.  A Liouville type Theorem for an integral system , 2006 .

[18]  Wenxiong Chen,et al.  Liouville theorems involving the fractional Laplacian on a half space , 2015 .

[19]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[20]  Wenxiong Chen,et al.  Maximum principles for the fractional p-Laplacian and symmetry of solutions , 2017, Advances in Mathematics.

[21]  Wenxiong Chen,et al.  Indefinite fractional elliptic problem and Liouville theorems , 2014, 1404.1640.

[22]  Li Ma,et al.  Radial symmetry results for fractional Laplacian systems , 2016, 1603.09468.

[23]  Yan Li,et al.  A direct method of moving planes for the fractional Laplacian , 2014, 1411.1697.

[24]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[25]  Li Ma,et al.  Uniqueness of Positive Bound States to Schrödinger Systems with Critical Exponents , 2007, SIAM J. Math. Anal..

[26]  Wenxiong Chen,et al.  The Fractional Laplacian , 2019 .

[27]  Guozhen Lu,et al.  Symmetry and regularity of extremals of an integral equation related to the Hardy–Sobolev inequality , 2011 .

[28]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  Congming Li,et al.  Symmetry of solutions to some systems of integral equations , 2005 .