Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models

The paper deals with the identification of non-linear characteristics of a class of block-oriented dynamical systems. The systems are driven by random stationary white processes (i.i.d. random input sequences) and disturbed by a zero-mean stationary, white or coloured, random noise. The prior knowledge about non-linear characteristics is non-parametric excluding implementation of standard parametric identification methods. To recover non-linearities, a class of Daubechies wavelet-based models using only input-output measurement data is introduced and their accuracy is investigated in the global MISE error sense. It is shown that the proposed models converge with a growing collection of data to the true non-linear characteristics (or their versions), provided that the complexity of the models is appropriately fitted to the number of measurements. Suitable rules for optimum model size selection, maximizing the convergence speed, are given and the asymptotic rate of convergence of the MISE error for optimum models is established. It is shown that in some circumstances the rate is the best possible that can be achieved in non-parametric inference. We also show that the convergence conditions and the asymptotic rate of convergence are insensitive to the correlation of the noise and are the same for known and unknown input probability density function (assumed to exist). The theory is illustrated by simulation examples.

[1]  Z. Hasiewicz Hammerstein system identification by the Haar multiresolution approximation , 1999 .

[2]  W. Greblicki,et al.  Fourier and Hermite series estimates of regression functions , 1985 .

[3]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[4]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[5]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[6]  Daniel Graupe,et al.  Identification of Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[8]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[9]  Adam Krzyzak On Identification of Discrete Hammerstein Systems by the Fourier Series Regression Estimate , 1988, 1988 American Control Conference.

[10]  A. Krzyżak Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .

[11]  Miroslaw Pawlak,et al.  Dynamic system identification with order statistics , 1994, IEEE Trans. Inf. Theory.

[12]  Y. Kitada Identification of Nonlinear Structural Dynamic Systems Using Wavelets , 1998 .

[13]  Anders Wallén,et al.  Tools for Autonomous Process Control , 2000 .

[14]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[15]  Zygmunt Hasiewicz,et al.  Nonlinear system identification by the Haar multiresolution analysis , 1998 .

[16]  Andrew E. Yagle,et al.  Nonlinear system identification of hydraulic actuator. Friction dynamics using a Hammerstein model , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[17]  Zygmunt Hasiewicz,et al.  Identifiability analysis of interconnected zero-memory composite systems , 1988 .

[18]  Zygmunt Hasiewicz,et al.  Non-parametric estimation of non-linearity in a cascade time-series system by multiscale approximation , 2001, Signal Process..

[19]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[20]  Miroslaw Pawlak,et al.  Nonparametric identification of a cascade nonlinear time series system , 1991, Signal Process..

[21]  W. Greblicki,et al.  Cascade non-linear system identification by a non-parametric method , 1994 .

[22]  W. Greblicki,et al.  Hammerstein system identification by non-parametric regression estimation , 1987 .

[23]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[24]  S. Mallat A wavelet tour of signal processing , 1998 .

[25]  Michael Nikolaou,et al.  Constrained model predictive control with simultaneous identification using wavelets , 1996 .

[26]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[27]  Philip Moore,et al.  Modelling study, analysis and robust servo control of pneumatic cylinder actuator systems , 2001 .

[28]  Stamatis Cambanis,et al.  Wavelet approximation of deterministic and random signals: convergence properties and rates , 1994, IEEE Trans. Inf. Theory.

[29]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[30]  Ezio Biglieri,et al.  Analysis and compensation of nonlinearities in digital transmission systems , 1988, IEEE J. Sel. Areas Commun..

[31]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[32]  Bernard Delyon,et al.  Nonlinear black-box models in system identification: Mathematical foundations , 1995, Autom..

[33]  A. Krzyżak,et al.  Non-parametric identification of a memoryless system with a cascade structure , 1979 .

[34]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[35]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[36]  Kwang-Joon Kim,et al.  IDENTIFICATION OF LOUDSPEAKER NONLINEARITIES USING THE NARMAX MODELING TECHNIQUE , 1994 .

[37]  Zygmunt Hasiewicz,et al.  Two-stage procedure for parameter estimation in large-scale interconnected linear zero-memory systems , 1988 .

[38]  Zygmunt Hasiewicz,et al.  Identifiability of large-scale interconnected linear zero-memory systems , 1987 .

[39]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[40]  A. Juditsky,et al.  Estimating Wavelet Coefficients , 1995 .

[41]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[42]  W. Greblicki Non-parametric orthogonal series identification of Hammerstein systems , 1989 .

[43]  Alessandro Neri,et al.  Bandpass nonlinear systems identification by higher order cross correlation , 1991, IEEE Trans. Signal Process..

[44]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[45]  K. Naka,et al.  Identification of multi-input biological systems. , 1974, IEEE transactions on bio-medical engineering.

[46]  Zygmunt Hasiewicz Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems , 1989 .

[47]  Hai-Wen Chen,et al.  Modeling and identification of parallel nonlinear systems: structural classification and parameter estimation methods , 1995, Proc. IEEE.

[48]  Christian Kleinewächter,et al.  On identification , 2005, Electron. Notes Discret. Math..

[49]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[50]  Ewaryst Rafaj⌈owicz Nonparametric orthogonal series estimators of regression: A class attaining the optimal convergence rate in L2☆ , 1987 .

[51]  Jay A. Farrell,et al.  Wavelet-based system identification for nonlinear control , 1999, IEEE Trans. Autom. Control..

[52]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[53]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .