Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors

The targeted optimization of the functional properties of porous materials includes the understanding of their transport properties and thus requires knowledge about the relationship between material synthesis, resulting in three-dimensional material morphology, and relevant transport properties. In this Perspective, we present our views and results on the characterization of microscopic disorder in functional porous materials, which are widely used today as fixed beds in adsorption, separation, and catalysis. This allows us to identify structural parameters that impact their mass transport properties and eventually their overall performance in technological operations. We address this complex topic at the following levels: (i) computer-generation of disordered packings allows the systematic investigation of the bed porosity (packing density) and degree of packing heterogeneity. These studies are complemented by the physical reconstruction of real packed and monolithic beds, which resolves the salient features of the packing process and monolith synthesis that are under the control of the experimentalist. (ii) Once reconstructed packed-bed and monolith morphologies are available, they are analysed by statistical methods to derive structural descriptors for their mass transport properties. Spatial tessellation schemes and chord length distributions are shown to be suitable for that purpose. They lead us to sensitive correlations of the degree of pore-environment heterogeneity and packing-scale disorder with the dynamics of (random) diffusion and (flow-field dependent) hydrodynamic dispersion, respectively. (iii) Direct or pore-scale numerical simulations are implemented on a high-performance computing platform to quantify the relevant transport properties of the materials. This complementary approach highlights the morphological descriptors of mass transport efficiency. They are validated by the simulations and in the future could direct the rational design of materials from their synthesis to targeted applications based on physical reconstruction.

[1]  A. Höltzel,et al.  Topological analysis of non-granular, disordered porous media: determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths , 2016 .

[2]  Yongqin Lv,et al.  Assessing Structural Correlations and Heterogeneity Length Scales in Functional Porous Polymers from Physical Reconstructions , 2015, Advanced materials.

[3]  Ovidiu Ersen,et al.  Exploring nanomaterials with 3D electron microscopy , 2015 .

[4]  A. Seidel-Morgenstern,et al.  Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient. , 2015, Journal of chromatography. A.

[5]  M. Sepaniak,et al.  Nanoscale pillar arrays for separations. , 2015, The Analyst.

[6]  D. Su,et al.  Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. , 2015, Chemical reviews.

[7]  M. Wirth,et al.  Submicrometer particles and slip flow in liquid chromatography. , 2015, Analytical chemistry.

[8]  B. Smarsly,et al.  Synthesis and morphological characterization of phenyl-modified macroporous–mesoporous hybrid silica monoliths , 2015 .

[9]  C. Kübel,et al.  Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[10]  J. Jorgenson,et al.  1.1 μm superficially porous particles for liquid chromatography: part II: column packing and chromatographic performance. , 2015, Journal of chromatography. A.

[11]  A. Inayat,et al.  Micro/Macroporous System: MFI‐Type Zeolite Crystals with Embedded Macropores , 2015, Advanced materials.

[12]  J. Kärger Transport phenomena in nanoporous materials. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  Yongqin Lv,et al.  Advances and recent trends in the field of monolithic columns for chromatography. , 2015, Analytical chemistry.

[14]  S. Moghaddam,et al.  Monoporous micropillar wick structures, I-Mass transport characteristics , 2014 .

[15]  H. Miura,et al.  Long-range topological correlations of real polycrystalline grains in two dimensions , 2014 .

[16]  A. Bhaumik,et al.  Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications , 2014 .

[17]  J. Smått,et al.  Hierarchically porous monoliths of carbon and metal oxides with ordered mesopores , 2014, Journal of Porous Materials.

[18]  D. Pérez-Quintanilla,et al.  Novel supports in chiral stationary phase development for liquid chromatography. Preparation, characterization and application of ordered mesoporous silica particles. , 2014, Journal of chromatography. A.

[19]  H. Makse,et al.  Adhesive loose packings of small dry particles. , 2014, Soft matter.

[20]  F. Švec,et al.  Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers , 2014 .

[21]  B. Su,et al.  Synthesis and applications of hierarchically porous catalysts , 2014 .

[22]  G. Guiochon,et al.  Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles. , 2014, Journal of chromatography. A.

[23]  G. Whitesides,et al.  Formation of highly ordered self-assembled monolayers of alkynes on Au(111) substrate. , 2014, Journal of the American Chemical Society.

[24]  Rajandrea Sethi,et al.  Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  C. Kübel,et al.  Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[26]  S. Torquato,et al.  Impact of microstructure on the effective diffusivity in random packings of hard spheres , 2014 .

[27]  U. Tallarek,et al.  Longitudinal and transverse dispersion in flow through random packings of spheres: a quantitative comparison of experiments, simulations, and models. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Pérez‐Ramírez,et al.  Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts , 2014, Nature Communications.

[29]  Ulrich Tallarek,et al.  Random-close packing limits for monodisperse and polydisperse hard spheres. , 2014, Soft matter.

[30]  S. Bhatia,et al.  Understanding the diffusional tortuosity of porous materials: An effective medium theory perspective , 2014 .

[31]  G. Guiochon,et al.  Effect of adsorption on solute dispersion: a microscopic stochastic approach. , 2014, Analytical chemistry.

[32]  Lihua Liu,et al.  Design, preparation, and application of ordered porous polymer materials , 2014 .

[33]  C. Berg Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity , 2014, Transport in Porous Media.

[34]  H. Gardeniers,et al.  In situ measurement of the transversal dispersion in ordered and disordered two-dimensional pillar beds for liquid chromatography. , 2014, Analytical chemistry.

[35]  M. Oschatz,et al.  Tailoring porosity in carbon materials for supercapacitor applications , 2014 .

[36]  S. Ciccariello The chord-length probability density of the regular octahedron , 2014, 1401.7950.

[37]  R. Macpherson,et al.  Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  James P. Grinias,et al.  Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 μm particles. , 2013, Journal of chromatography. A.

[39]  M. Sepaniak,et al.  Highly ordered silicon pillar arrays as platforms for planar chromatography. , 2013, Analytical chemistry.

[40]  T. Aste,et al.  Set Voronoi diagrams of 3D assemblies of aspherical particles , 2013 .

[41]  G. Guiochon,et al.  How Microscopic Characteristics of the Adsorption Kinetics Impact Macroscale Transport in Chromatographic Beds , 2013 .

[42]  U. Tallarek,et al.  Analytical silica monoliths with submicron macropores: current limitations to a direct morphology-column efficiency scaling. , 2013, Journal of chromatography. A.

[43]  William M. Harris,et al.  Three-dimensional microstructural imaging methods for energy materials. , 2013, Physical chemistry chemical physics : PCCP.

[44]  Jared F. Mike,et al.  Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges. , 2013, ACS macro letters.

[45]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[46]  J. Eckert,et al.  Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithium-sulfur batteries , 2013 .

[47]  A. Seidel-Morgenstern,et al.  Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. , 2013, Journal of chromatography. A.

[48]  S. Luding,et al.  Upscaling and microstructural analysis of the flow-structure relation perpendicular to random, parallel fiber arrays , 2013 .

[49]  Geoff P. Delaney,et al.  Minkowski Tensors and Local Structure Metrics: Amorphous and Crystalline Sphere Packings , 2013 .

[50]  Christian Perwass,et al.  Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra , 2013, Geometric Algebra Computing.

[51]  I. Nischang Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. , 2013, Journal of chromatography. A.

[52]  Nicholas D. Petkovich,et al.  Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. , 2013, Chemical Society reviews.

[53]  K. Wilson,et al.  Hierarchical porous materials: catalytic applications. , 2013, Chemical Society reviews.

[54]  T. Bein,et al.  Mesoporosity--a new dimension for zeolites. , 2013, Chemical Society reviews.

[55]  Jörg Kärger,et al.  Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. , 2013, Chemical Society reviews.

[56]  A. Inayat,et al.  Silica monoliths with hierarchical porosity obtained from porous glasses. , 2013, Chemical Society reviews.

[57]  Philip J. Withers,et al.  A novel architecture for pore network modelling with applications to permeability of porous media , 2013 .

[58]  Ali Ebrahimi,et al.  Genetic algorithm-based pore network extraction from micro-computed tomography images , 2013 .

[59]  Ignacio Pagonabarraga,et al.  Accounting for adsorption and desorption in lattice Boltzmann simulations. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  G. Guiochon,et al.  Perspectives on the evolution of the column efficiency in liquid chromatography. , 2013, Analytical chemistry.

[61]  Siarhei Khirevich,et al.  Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings , 2013 .

[62]  Siarhei Khirevich,et al.  Pore-size entropy of random hard-sphere packings , 2013 .

[63]  Peng Lu,et al.  Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries , 2013 .

[64]  C. Pohl,et al.  Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography. , 2012, Journal of chromatography. A.

[65]  B. Smarsly,et al.  Influence of particle properties on the wall region in packed capillaries. , 2012, Journal of chromatography. A.

[66]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[67]  A. Seidel-Morgenstern,et al.  Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios. , 2012, Journal of chromatography. A.

[68]  M. Stampanoni,et al.  Topology of evolving pore networks , 2012 .

[69]  Bert M. Weckhuysen,et al.  Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. , 2012, Nature chemistry.

[70]  K. Kunze,et al.  Visualization of hierarchically structured zeolite bodies from macro to nano length scales. , 2012, Nature chemistry.

[71]  D. Hlushkou,et al.  From random sphere packings to regular pillar arrays: analysis of transverse dispersion. , 2012, Journal of chromatography. A.

[72]  Emanuele Catalano,et al.  Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings , 2012, Transport in Porous Media.

[73]  V. Presser,et al.  Carbide-derived carbon monoliths with hierarchical pore architectures. , 2012, Angewandte Chemie.

[74]  Hui Wu,et al.  Electrospinning of ceramic nanofibers: Fabrication, assembly and applications , 2012, Journal of Advanced Ceramics.

[75]  M. Wirth,et al.  Slip flow in colloidal crystals for ultraefficient chromatography. , 2012, Journal of the American Chemical Society.

[76]  K. Matyjaszewski,et al.  Design and preparation of porous polymers. , 2012, Chemical reviews.

[77]  R. Maier,et al.  Modeling of dispersion in a polymeric chromatographic monolith. , 2012, Journal of chromatography. A.

[78]  James P. Grinias,et al.  Morphology and separation efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns. , 2012, Analytical chemistry.

[79]  D. Ruthven,et al.  Diffusion in nanoporous materials , 2012 .

[80]  C. Gommes,et al.  Mesoporosity of zeolite Y: quantitative three-dimensional study by image analysis of electron tomograms. , 2012, Angewandte Chemie.

[81]  Andrew I. Cooper,et al.  Nanoporous organic polymer networks , 2012 .

[82]  G. Guiochon,et al.  The current revolution in column technology: how it began, where is it going? , 2012, Journal of chromatography. A.

[83]  J. Herri,et al.  Chord length distributions interpretation using a polydispersed population: Modeling and experiments , 2012 .

[84]  S. Bruns,et al.  Morphology and separation efficiency of a new generation of analytical silica monoliths. , 2012, Journal of chromatography. A.

[85]  G. Guiochon,et al.  Mass transfer kinetics, band broadening and column efficiency. , 2012, Journal of chromatography. A.

[86]  Peter D. Lee,et al.  The influence of nanoscale microstructural variations on the pellet scale flow properties of hierarchical porous catalytic structures using multiscale 3D imaging , 2011 .

[87]  A. Seidel-Morgenstern,et al.  From random sphere packings to regular pillar arrays: effect of the macroscopic confinement on hydrodynamic dispersion. , 2011, Journal of chromatography. A.

[88]  G. Guiochon,et al.  On the relationship between band broadening and the particle-size distribution of the packing material in liquid chromatography: theory and practice. , 2011, Journal of chromatography. A.

[89]  Andreas Seidel-Morgenstern,et al.  Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings. , 2011, Journal of chromatography. A.

[90]  S. Polarz Shape Matters: Anisotropy of the Morphology of Inorganic Colloidal Particles – Synthesis and Function , 2011 .

[91]  B. Smarsly,et al.  Morphological analysis of physically reconstructed capillary hybrid silica monoliths and correlation with separation efficiency. , 2011, Journal of chromatography. A.

[92]  Michael L. Johns,et al.  Catalyst Effectiveness Factor Distributions in Isothermal Packed Bed Reactors , 2011 .

[93]  W. Schwieger,et al.  Zeolitic Materials with Hierarchical Porous Structures , 2011, Advanced materials.

[94]  SonBinh T. Nguyen,et al.  Porous organic polymers in catalysis: Opportunities and challenges , 2011 .

[95]  R. Maier,et al.  Modeling of flow in a polymeric chromatographic monolith. , 2011, Journal of chromatography. A.

[96]  I. Nischang,et al.  Porous polymer monoliths for small molecule separations: advancements and limitations , 2011, Analytical and bioanalytical chemistry.

[97]  A. Höltzel,et al.  Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings. , 2011, Analytical chemistry.

[98]  S. Bruns,et al.  Physical reconstruction of packed beds and their morphological analysis: core-shell packings as an example. , 2011, Journal of chromatography. A.

[99]  Eric D. Wachsman,et al.  Microstructure and Connectivity Quantification of Complex Composite Solid Oxide Fuel Cell Electrode Three-Dimensional Networks , 2011 .

[100]  O. Planinšek,et al.  Ordered mesoporous silicates as matrices for controlled release of drugs , 2010, Acta pharmaceutica.

[101]  B. Weckhuysen,et al.  Infrared and Raman imaging of heterogeneous catalysts. , 2010, Chemical Society reviews.

[102]  D. Brett,et al.  Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques , 2010 .

[103]  Stefan Bruns,et al.  From pore scale to column scale dispersion in capillary silica monoliths. , 2010, Analytical chemistry.

[104]  A. Seidel-Morgenstern,et al.  Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion. , 2010, Journal of chromatography. A.

[105]  Parveen Kumar,et al.  Periodic mesoporous organic–inorganic hybrid materials: Applications in membrane separations and adsorption , 2010 .

[106]  J. Jorgenson Capillary liquid chromatography at ultrahigh pressures. , 2010, Annual review of analytical chemistry.

[107]  Leonardo E. Silbert,et al.  Jamming of frictional spheres and random loose packing , 2010, 1108.0012.

[108]  Yuliang Jin,et al.  Model of random packings of different size balls. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  N. Menon,et al.  Loose packings of frictional spheres , 2010, 1005.0804.

[110]  Brandy J. Johnson,et al.  Mesoporous materials in sensing: morphology and functionality at the meso-interface , 2010, Analytical and bioanalytical chemistry.

[111]  Liang Wang,et al.  Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials. , 2009, Chemical record.

[112]  María Vallet-Regí,et al.  Drug delivery from ordered mesoporous matrices , 2009, Expert opinion on drug delivery.

[113]  A. Höltzel,et al.  Impact of conduit geometry on the performance of typical particulate microchip packings. , 2009, Analytical chemistry.

[114]  Martin J Blunt,et al.  Pore-network extraction from micro-computerized-tomography images. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  Andreas Seidel-Morgenstern,et al.  Time and length scales of eddy dispersion in chromatographic beds. , 2009, Analytical chemistry.

[116]  T. Aste,et al.  Quantification of the heterogeneity of particle packings. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  Anne Galarneau,et al.  Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. , 2009, Angewandte Chemie.

[118]  B. Weckhuysen Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. , 2009, Angewandte Chemie.

[119]  Andreas Seidel-Morgenstern,et al.  Large-scale simulation of flow and transport in reconstructed HPLC-microchip packings. , 2009, Analytical chemistry.

[120]  Claudia Redenbach,et al.  Microstructure models for cellular materials , 2009 .

[121]  T. Bein,et al.  Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica , 2009 .

[122]  Andreas Stein,et al.  Functionalization of Porous Carbon Materials with Designed Pore Architecture , 2009 .

[123]  Eric Vincens,et al.  A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres , 2008 .

[124]  D. Mewes,et al.  Simulation of temperature fields in a narrow tubular adsorber by thermal lattice Boltzmann methods , 2008 .

[125]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[126]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[127]  Jian Liu,et al.  Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography. , 2008, Journal of chromatography. A.

[128]  K. Unger,et al.  Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. , 2008, Journal of chromatography. A.

[129]  T. Aste,et al.  Emergence of Gamma distributions in granular materials and packing models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[130]  A. Mizrahi,et al.  Characterization of voids in spherical particle systems by Delaunay empty spheres , 2008 .

[131]  F. Fajula,et al.  Pore structural characteristics, size exclusion properties and column performance of two mesoporous amorphous silicas and their pseudomorphically transformed MCM-41 type derivatives. , 2007, Journal of separation science.

[132]  A. Höltzel,et al.  Impact of conduit geometry and bed porosity on flow and dispersion in noncylindrical sphere packings. , 2007, Analytical chemistry.

[133]  R. Bouchet,et al.  Tortuosity of porous particles. , 2007, Analytical chemistry.

[134]  F. Fajula,et al.  MCM-41 silica monoliths with independent control of meso- and macroporosity , 2007 .

[135]  T. Aste,et al.  Onset of mechanical stability in random packings of frictional spheres. , 2007, Physical review letters.

[136]  Georges Guiochon,et al.  Monolithic columns in high-performance liquid chromatography. , 2007, Journal of chromatography. A.

[137]  D. Mewes,et al.  Simulation of micro- and macro-transport in a packed bed of porous adsorbents by lattice Boltzmann methods , 2007 .

[138]  P. Midgley,et al.  Three-Dimensional Nanoparticle Distribution and Local Curvature of Heterogeneous Catalysts Revealed by Electron Tomography , 2007 .

[139]  M. Blunt,et al.  Network extraction from sandstone and carbonate pore space images , 2007 .

[140]  Dietrich Stoyan,et al.  Statistical analysis of random sphere packings with variable radius distribution , 2006 .

[141]  Marina L. Gavrilova,et al.  An algorithm for three‐dimensional Voronoi S‐network , 2006, J. Comput. Chem..

[142]  T. Patzek,et al.  Pore space morphology analysis using maximal inscribed spheres , 2006 .

[143]  Abraham M Lenhoff,et al.  Three-dimensional pore structure of chromatographic adsorbents from electron tomography. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[144]  J. J. Destefano,et al.  The art and science of forming packed analytical high-performance liquid chromatography columns. , 2006, Journal of chromatography. A.

[145]  R. Maier,et al.  How does column packing microstructure affect column efficiency in liquid chromatography? , 2006, Journal of chromatography. A.

[146]  M. Pons,et al.  Modeling of chord length distributions , 2006 .

[147]  V. Kumaran,et al.  Voronoi neighbor statistics of homogeneously sheared inelastic hard disks and hard spheres. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[148]  Runyu Yang,et al.  Role of interparticle forces in the formation of random loose packing. , 2006, Physical review letters.

[149]  Takeshi Hara,et al.  Properties of Monolithic Silica Columns for HPLC , 2006, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[150]  J. Delgado A critical review of dispersion in packed beds , 2006 .

[151]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[152]  V. Kumaran,et al.  Voronoi neighbor statistics of hard-disks and hard-spheres. , 2005, The Journal of chemical physics.

[153]  W. Lindner,et al.  Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury porosimetry, transmission electron microscopy and inverse size exclusion chromatography. , 2005, Journal of chromatography. A.

[154]  F. Schüth ENGINEERED POROUS CATALYTIC MATERIALS , 2005 .

[155]  F. Xiao Ordered Mesoporous Materials with Improved Stability and Catalytic Activity , 2005 .

[156]  Lynn F. Gladden,et al.  Simulation of packed bed reactors using lattice Boltzmann methods , 2005 .

[157]  E. Prouzet,et al.  A review on the synthesis, structure and applications in separation processes of mesoporous MSU-X silica obtained with the two-step process , 2005 .

[158]  T. Aste,et al.  Geometrical structure of disordered sphere packings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[159]  Akira Taguchi,et al.  Ordered mesoporous materials in catalysis , 2005 .

[160]  F. Švec Organic polymer monoliths as stationary phases for capillary HPLC. , 2004, Journal of separation science.

[161]  Martin J. Blunt,et al.  Pore‐scale modeling of longitudinal dispersion , 2004 .

[162]  H. White,et al.  Anisotropic Diffusion in Face-Centered Cubic Opals , 2004 .

[163]  F. Renzo,et al.  Great Improvement of Chromatographic Performance Using MCM-41 Spheres as Stationary Phase in HPLC , 2004 .

[164]  M. Antonietti,et al.  Promises and problems of mesoscale materials chemistry or why meso? , 2004, Chemistry.

[165]  M. Lindén,et al.  Spherical silica agglomerates possessing hierarchical porosity prepared by spray drying of MCM-41 and MCM-48 nanospheres , 2003 .

[166]  Ping Sheng,et al.  Large‐Area Two‐Dimensional Mesoscale Quasi‐Crystals , 2003 .

[167]  Younan Xia,et al.  Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays , 2003 .

[168]  G. Guiochon,et al.  Mechanics of column beds: II. Modeling of coupled stress-strain-flow behavior , 2003 .

[169]  Runyu Yang,et al.  On the relationship between porosity and interparticle forces , 2003 .

[170]  Florian Huber,et al.  Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation , 2003 .

[171]  E. Hilder,et al.  Polymeric monolithic stationary phases for capillary electrochromatography , 2002, Electrophoresis.

[172]  M. Antonietti,et al.  Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. , 2002, Chemical communications.

[173]  R. Maier,et al.  Simulation of packed-bed chromatography utilizing high-resolution flow fields: comparison with models. , 2002, Analytical chemistry.

[174]  D. Enke,et al.  Pore Size Distribution and Chord Length Distribution of Porous VYCOR Glass (PVG) , 2002 .

[175]  K. Nakanishi,et al.  Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. , 2002, Journal of chromatography. A.

[176]  U. Tallarek,et al.  Characterization of silica-based monoliths with bimodal pore size distribution. , 2002, Analytical chemistry.

[177]  R. Zou,et al.  Voronoi tessellation of the packing of fine uniform spheres. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[178]  W. Gille Chord length distributions of infinitely long geometric figures , 2002 .

[179]  M. Zecca,et al.  Catalysis and polymer networks — the role of morphology and molecular accessibility , 2001 .

[180]  M. Kümmel,et al.  Spherical MSU‐1 Mesoporous Silica Particles Tuned for HPLC , 2001 .

[181]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[182]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[183]  G. Guiochon,et al.  Physical evidence of two wall effects in liquid chromatography. , 2000, Journal of chromatography. A.

[184]  Stacy E. Howington,et al.  Pore-scale simulation of dispersion , 2000 .

[185]  C. Cramers,et al.  Hydrodynamic aspects of slurry packing processes in microcolumn liquid chromatography. , 2000, Journal of chromatography. A.

[186]  Zhengdong Cheng,et al.  Controlled growth of hard-sphere colloidal crystals , 1999, Nature.

[187]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[188]  Lynn F. Gladden,et al.  Flow and dispersion in porous media: Lattice‐Boltzmann and NMR studies , 1999 .

[189]  Helio Pedro Amaral Souto,et al.  Dispersion in periodic porous media. Experience versus theory for two-dimensional systems , 1997 .

[190]  G. Guiochon,et al.  Consolidation of particle beds and packing of chromatographic columns. , 1997, Journal of chromatography. A.

[191]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[192]  D. Caprion,et al.  Computer investigation of long-range correlations and local order in random packings of spheres. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[193]  F. Schüth,et al.  Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography , 1996 .

[194]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[195]  C. Cramers,et al.  Colloid chemical aspects of slurry packing techniques in microcolumn liquid chromatography , 1995 .

[196]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[197]  Pierre M. Adler,et al.  Taylor dispersion in porous media. Determination of the dispersion tensor , 1993 .

[198]  S. Whitaker,et al.  Transport in ordered and disordered porous media: volume-averaged equations, closure problems, and comparison with experiment , 1993 .

[199]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[200]  Shantanu Sinha,et al.  Porous vycor glass: The microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorption , 1991 .

[201]  D. A. Edwards,et al.  Dispersion of inert solutes in spatially periodic, two-dimensional model porous media , 1991 .

[202]  P. Venema,et al.  The effective self-diffusion coefficient of solvent molecules in colloidal crystals , 1991 .

[203]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[204]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[205]  Jodrey,et al.  Computer simulation of close random packing of equal spheres. , 1985, Physical review. A, General physics.

[206]  John F. Brady,et al.  Dispersion in fixed beds , 1985, Journal of Fluid Mechanics.

[207]  P. Pieranski,et al.  Thin Colloidal Crystals , 1983 .

[208]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[209]  S. Mitchell,et al.  Superior Mass Transfer Properties of Technical Zeolite Bodies with Hierarchical Porosity , 2014 .

[210]  Shaobin Wang,et al.  Ordered mesoporous materials for drug delivery , 2009 .

[211]  Andreas Seidel-Morgenstern,et al.  Pore-scale dispersion in electrokinetic flow through a random sphere packing. , 2007, Analytical chemistry.

[212]  J. Delgado Longitudinal and Transverse Dispersion in Porous Media , 2007 .

[213]  Wuzong Zhou,et al.  Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. , 2003, Chemical communications.

[214]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[215]  S. Torquato Random Heterogeneous Materials , 2002 .

[216]  P. Spedding,et al.  Simulation of packing density and liquid flow fixed beds—II. Voronoi polyhedra studies , 1998 .

[217]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.