Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model

Abstract This paper addresses the fresh behaviors, gel structure, strength, porosity and drying shrinkage of alkali activated slag-fly ash composites designed by applying the modified Andreasen & Andersen model. The results show a large variation of slump flows and setting times when using different slag/fly ash ratios and activator moduli. The microstructure analyses by FTIR and TG show the gel structure remains stable after 1 d of curing, and mixes with higher slag contents and lower activator moduli show slightly higher bound water content. The main reaction product is a chain structured C-A-S-H type gel regardless of slag/fly ash ratio and activator modulus, but a slightly higher main absorption band is shown in samples with high fly ash contents. A 28-d compressive strength of about 90 N/mm 2 is achieved and a higher content of slag leads to a higher strength and lower porosity in general. An optimum activator modulus of 1.4 in terms of strength is shown, while an increase of activator modulus between 1.0 and 1.8 benefits the pore structure refinement. Both slag content and activator modulus strongly affect the drying shrinkage, and using a high amount of fly ash and low activator modulus can effectively reduce the drying shrinkage.

[1]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[2]  M. Pilling,et al.  Reaction Kinetics , 1937, Nature.

[3]  Wellington Longuini Repette,et al.  Drying and autogenous shrinkage of pastes and mortars with activated slag cement , 2008 .

[4]  A. Fernández-Jiménez,et al.  FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .

[5]  M. Blanco-Varela,et al.  Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction , 2004 .

[6]  H. Brouwers,et al.  Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends , 2015 .

[7]  Gao Properties of alkali activated slag-fly ash blends with limestone addition , 2015 .

[8]  H. Brouwers,et al.  Self-Compacting Concrete: Theoretical and Experimental Study , 2005 .

[9]  H. Brouwers,et al.  Particle-size distribution and packing fraction of geometric random packings. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Hjh Jos Brouwers,et al.  Ultra-lightweight concrete: Conceptual design and performance evaluation , 2015 .

[11]  Jay G. Sanjayan,et al.  Effect of elevated temperatures on geopolymer paste, mortar and concrete , 2010 .

[12]  S. Beer,et al.  Strength , 1875, Cybern. Hum. Knowing.

[13]  T Sedran,et al.  Optimization of ultra-high-performance concrete by the use of a packing model , 1994 .

[14]  T. Korim,et al.  Correlation of strength to apparent porosity of geopolymers – Understanding through variations of setting time , 2015 .

[15]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[16]  N. Neithalath,et al.  Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends , 2013 .

[17]  Hjh Jos Brouwers,et al.  A new mix design concept for earth-moist concrete: A theoretical and experimental study , 2008 .

[18]  J. Sykes,et al.  Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid , 2000 .

[19]  Alaa M. Rashad,et al.  A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer , 2013 .

[20]  Thierry Sedran,et al.  Mixture-proportioning of high-performance concrete , 2002 .

[21]  D. Macphee,et al.  Effect on Fresh C-S-H gels of the Simultaneous Addition of Alkali and Aluminium , 2010 .

[22]  Joost C. Walraven,et al.  The use of particle packing models to design ecological concrete , 2009 .

[23]  Hjh Jos Brouwers,et al.  Development of a self-compacting gypsum-based lightweight composite , 2012 .

[24]  Mohd Zamin Jumaat,et al.  The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar , 2014 .

[25]  Frank Collins,et al.  Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete , 2000 .

[26]  Ángel Palomo,et al.  Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II , 2007 .

[27]  Haeng-Ki Lee,et al.  Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages , 2014 .

[28]  J. Deventer,et al.  Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash , 2014 .

[29]  Hjh Jos Brouwers,et al.  Mix design and properties assessment of Ultra-High-Performance Fibre Reinforced Concrete (UHPFRC) , 2014 .

[30]  Ailar Hajimohammadi,et al.  Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. , 2011, Journal of colloid and interface science.

[31]  Yubin Jun,et al.  The importance of the network-modifying element content in fly ash as a simple measure to predict its strength potential for alkali-activation , 2015 .

[32]  Y. Ma Microstructure and Engineering Properties of Alkali Activated Fly Ash -as an environment friendly alternative to Portland cement , 2013 .

[33]  Frank Bullen,et al.  Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin wi , 2012 .

[34]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[35]  Ángel Palomo,et al.  Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study , 2007 .

[36]  S. Aydın A ternary optimisation of mineral additives of alkali activated cement mortars , 2013 .

[37]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[38]  J. Deventer,et al.  The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’ , 2007 .

[39]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[40]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[41]  F. Puertas,et al.  Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .

[42]  Hjh Jos Brouwers,et al.  Microstructure and mechanical properties of β-hemihydrate produced gypsum: an insight from its hydration process , 2011 .

[43]  Paul F. McMillan,et al.  Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .

[44]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[45]  Á. Palomo,et al.  Effect of Calcium Additions on N-A-S-H Cementitious Gels , 2010 .

[46]  Rupert J. Myers,et al.  X-ray microtomography shows pore structure and tortuosity in alkali-activated binders , 2012 .

[47]  Guang Ye,et al.  The shrinkage of alkali activated fly ash , 2015 .

[48]  H. Brouwers,et al.  The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials , 2009 .

[49]  V. Kodur,et al.  Development of metakaolin–fly ash based geopolymers for fire resistance applications , 2014 .

[50]  A. H. M. Andreasen Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten) , 1930 .

[51]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[52]  Tai-Tien Wang,et al.  Permeation characteristics and impact factors of geopolymers made of kaolin , 2015 .

[53]  Mingkai Zhou,et al.  Magnesia modification of alkali-activated slag fly ash cement , 2011 .

[54]  Toshifumi Sugama,et al.  Acid-resistant cements for geothermal wells: sodium silicate activated slag/fly ash blends , 2005 .

[55]  S. Foster,et al.  Development of a mix design methodology for high‐performance geopolymer mortars , 2013 .

[56]  Ran Huang,et al.  Binding mechanism and properties of alkali-activated fly ash/slag mortars , 2013 .

[57]  H. Lee,et al.  Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature , 2013 .

[58]  Caijun Shi,et al.  Strength, pore structure and permeability of alkali-activated slag mortars , 1996 .

[59]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[60]  A. Rashad PROPERTIES OF ALKALI-ACTIVATED FLY ASH CONCRETE BLENDED WITH SLAG , 2013 .

[61]  J. I. Escalante García,et al.  Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus , 2006 .

[62]  Vitor A. Nunes,et al.  Andreasen Particle Packing Method on the Development of Geopolymer Concrete for Civil Engineering , 2014 .

[63]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to acid attack , 2003 .

[64]  S. P. Mehrotra,et al.  Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer , 2010, Journal of Materials Science.

[65]  H. Lee,et al.  Reactivity and reaction products of alkali-activated, fly ash/slag paste , 2015 .