Curve and polygon evolution techniques for image processing

The objective of this thesis is to develop image processing algorithms which are efficient, statistically robust and sufficiently general, in order to account for noise and textural variations in images, and which have the ability to extract and provide compact and useful descriptions of target objects in images, for object recognition and tracking purposes. The main contribution is the development of image processing algorithms, which are based on the theory of curve evolution with connections to information theory and probability theory. These connections form the basis for extracting a compact object description, in the form of a polygonal contour. One contribution is the development of a new class of curve evolutions designed to preserve prescribed polygonal structures in an image while removing noise. A local stochastic formulation of a geometric heat equation led to our proposal of its vanishing at pre-defined directions. Under these flows, the limiting shape of a curve is a polygon, pre-specified by the form and the parameters of the specific flow. The second contribution of the thesis is the development of a new active contour model which merges the desirable polygonal representation of an object directly to the image segmentation process by adapting an information-theoretic measure into an active contour framework with an unsupervised texture segmentation goal. The polygon-propagating models we develop can capture texture boundaries more reliably than the continuous active contour models because the evolution of an active polygon vertex depends on an overall speed function integrated along its two adjacent polygon edges rather than on pointwise measurements along continuous contour points. Thus, higher-order statistics which provide more adapted information than the first and second-order, are captured. Another contribution in this sequel is a new global polygon regularizer algorithm which uses electrostatics principles. The final contribution of the thesis is the development of a simple and efficient object tracking algorithm well-adapted to polygonal objects. This is an extension of the second contribution of the thesis, and the key idea here is centered around tracking a relatively few vertices together with their corresponding edges, which in turn yields a bookkeeping simplicity and hence efficiency.

[1]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[2]  José Martínez-Aroza,et al.  An Analysis of Edge Detection by Using the Jensen-Shannon Divergence , 2000, Journal of Mathematical Imaging and Vision.

[3]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[4]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[5]  Yvan G. Leclerc,et al.  Constructing simple stable descriptions for image partitioning , 1989, International Journal of Computer Vision.

[6]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[7]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[8]  Hamid Krim,et al.  Smart nonlinear diffusion: a probabilistic approach , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[10]  Yun He,et al.  A generalized divergence measure for robust image registration , 2003, IEEE Trans. Signal Process..

[11]  Anthony J. Yezzi,et al.  Stochastic differential equations and geometric flows , 2002, IEEE Trans. Image Process..

[12]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[13]  Jenq-Neng Hwang,et al.  Fast and automatic video object segmentation and tracking for content-based applications , 2002, IEEE Trans. Circuits Syst. Video Technol..

[14]  Hamid Krim,et al.  Active Polygons for Object Tracking , 2002 .

[15]  H. Krim,et al.  An information divergence measure for ISAR image registration , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[16]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[17]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[18]  Si-Woong Lee,et al.  Vertex adjustment method using geometric constraint for polygon-based shape coding , 2001 .

[19]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Gozde Unal,et al.  Segmentation and target recognition in SAR imagery using a level-sets-multiscale-filtering technique , 2001, SPIE Defense + Commercial Sensing.

[21]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[22]  Ronald-Bryan O. Alferez,et al.  Invariant, intra-class retrieval in homogeneous image databases , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[23]  A. Murat Tekalp,et al.  Tracking visible boundary of objects using occlusion adaptive motion snake , 2000, IEEE Trans. Image Process..

[24]  Anthony J. Yezzi,et al.  Feature-preserving flows: a stochastic differential equation's view , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[25]  Filiberto Pla,et al.  Using temporal integration for tracking regions in traffic monitoring sequences , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  José M. N. Leitão,et al.  Unsupervised contour representation and estimation using B-splines and a minimum description length criterion , 2000, IEEE Trans. Image Process..

[27]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[28]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Christophe Chesnaud,et al.  Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  L. F. Estrozi,et al.  Multiresolution shape representation without border shifting , 1999 .

[31]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[32]  Anthony J. Yezzi,et al.  A statistical approach to snakes for bimodal and trimodal imagery , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  Stephen M. Pizer,et al.  M-Reps: A New Object Representation for Graphics , 1999 .

[34]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[35]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[36]  Ronald-Bryan O. Alferez,et al.  Geometric and Illumination Invariants for Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Hamid Krim,et al.  A stochastic diffusion approach to signal denoising , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[38]  R. Deriche,et al.  Geodesic active regions for motion estimation and tracking , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[39]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[40]  Patrick Bouthemy,et al.  Robust real-time visual tracking using a 2D-3D model-based approach , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  James S. Duncan,et al.  Game-Theoretic Integration for Image Segmentation , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  F. Ulaby Fundamentals of applied electromagnetics , 1998 .

[43]  Luiz Velho,et al.  Warping and morphing of graphical objects , 1998 .

[44]  P Refregier,et al.  Improvement in robustness of the statistically independent region snake-based segmentation method of target-shape tracking. , 1998, Optics letters.

[45]  Song-Chun Zhu Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998 .

[46]  S. Osher,et al.  The Geometry of Wulff Crystal Shapes and Its Relations with Riemann Problems , 1998 .

[47]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[48]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[49]  Eero P. Simoncelli,et al.  Optimally Rotation-Equivariant Directional Derivative Kernels , 1997, CAIP.

[50]  Kaleem Siddiqi,et al.  Area and length minimizing flows for shape segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[52]  Kevin J. O'Connell Object-adaptive vertex-based shape coding method , 1997, IEEE Trans. Circuits Syst. Video Technol..

[53]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[54]  V. Caselles,et al.  Snakes in Movement , 1996 .

[55]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[57]  Larry S. Davis,et al.  3-D model-based tracking of humans in action: a multi-view approach , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[59]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[60]  James S. Duncan,et al.  Deformable boundary finding in medical images by integrating gradient and region information , 1996, IEEE Trans. Medical Imaging.

[61]  Guillermo Sapiro,et al.  Evolutions of Planar Polygons , 1995, Int. J. Pattern Recognit. Artif. Intell..

[62]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1995, Proceedings., International Conference on Image Processing.

[63]  Rajiv Mehrotra,et al.  Similar-Shape Retrieval in Shape Data Management , 1995, Computer.

[64]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[65]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[66]  Takeo Kanade,et al.  Model-based tracking of self-occluding articulated objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[67]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[68]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[69]  Rachid Deriche,et al.  Region tracking through image sequences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[70]  Wesley E. Snyder,et al.  Image Relaxation: Restoration and Feature Extraction , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[72]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[73]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Marie-Odile Berger How to track efficiently piecewise curved contours with a view to reconstructing 3D objects , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[75]  Patrick Bouthemy,et al.  Region-Based Tracking Using Affine Motion Models in Long Image Sequences , 1994 .

[76]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[77]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[78]  Kaleem Siddiqi,et al.  Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[79]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[80]  D. Mumford Elastica and Computer Vision , 1994 .

[81]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[82]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[83]  Kaleem Siddiqi,et al.  Parts of visual form: computational aspects , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Bernd Girod,et al.  Motion Analysis and Image Sequence Processing , 1993 .

[86]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[87]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[88]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[89]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[90]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[91]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[92]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[93]  Benjamin B. Kimia,et al.  On the evolution of curves via a function of curvature , 1992 .

[94]  Wesley E. Snyder,et al.  Mean field annealing: a formalism for constructing GNC-like algorithms , 1992, IEEE Trans. Neural Networks.

[95]  Rakesh Mohan,et al.  Multidimensional indexing for recognizing visual shapes , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[96]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[97]  Sergei Fogel,et al.  The estimation of velocity vector fields from time-varying image sequences , 1991, CVGIP Image Underst..

[98]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[99]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[100]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[101]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[102]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[103]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[104]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[105]  Wesley E. Snyder,et al.  Application of Affine-Invariant Fourier Descriptors to Recognition of 3-D Objects , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[106]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[107]  R. LeVeque Numerical methods for conservation laws , 1990 .

[108]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[109]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[110]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[111]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[112]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[113]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[114]  Rangasami L. Kashyap,et al.  Using Polygons to Recognize and Locate Partially Occluded Objects , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[115]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[116]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[117]  Hiroshi Imai,et al.  Computational-geometric methods for polygonal approximations of a curve , 1986, Comput. Vis. Graph. Image Process..

[118]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[119]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Rama Chellappa,et al.  Estimation of Object Motion Parameters from Noisy Images , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  James George Dunham,et al.  Optimum Uniform Piecewise Linear Approximation of Planar Curves , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Ellen C. Hildreth,et al.  Computations Underlying the Measurement of Visual Motion , 1984, Artif. Intell..

[123]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[124]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[125]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[126]  Yoshisuke Kurozumi,et al.  Polygonal approximation by the minimax method , 1982, Comput. Graph. Image Process..

[127]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[128]  Wesley E. Snyder Computer Analysis of Time-Varying Images , 1981, Computer.

[129]  Shimon Ullman,et al.  Analysis of Visual Motion by Biological and Computer Systems , 1981, Computer.

[130]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[131]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[132]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[133]  Herbert Freeman,et al.  Shape description via the use of critical points , 1978, Pattern Recognit..

[134]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[135]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[136]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[137]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[138]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[139]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.