A Level Set Approach Reflecting Sheet Structure with Single Auxiliary Function for Evolving Spirals on Crystal Surfaces

We introduce a new level set method to simulate motion of spirals in a crystal surface governed by an eikonal–curvature flow equation. Our formulation allows collision of several spirals and different strength (different modulus of Burgers vectors) of screw dislocation centers. We represent a set of spirals by a level set of a single auxiliary function $$u$$u minus a pre-determined multi-valued sheet structure function $$\theta $$θ, which reflects the strength of spirals (screw dislocation centers). The level set equation used in our method for $$u - \theta $$u-θ is the same as that of the eikonal–curvature flow equation. The multi-valued nature of the sheet structure function is only invoked when preparing the initial auxiliary function, which is nontrivial, and in the final step when extracting information such as the height of the spiral steps. Our simulation enables us not only to reproduce all speculations on spirals in a classical paper by Burton et al. (Philos Trans R Soc Lond Ser A Math Phys Sci 243, 299–358, 1951) but also to find several new phenomena.

[1]  Russel E. Caflisch,et al.  Growth, Structure and Pattern Formation for Thin Films , 2008, J. Sci. Comput..

[2]  Yoshikazu Giga,et al.  Surface Evolution Equations: A Level Set Approach , 2006 .

[3]  Multiplicity of rotating spirals under curvature flows with normal tip motion , 2004 .

[4]  Ryo Kobayashi,et al.  A brief introduction to phase field method , 2010 .

[5]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  S. Osher,et al.  Total variation and level set methods in image science , 2005, Acta Numerica.

[7]  R. Monneau,et al.  Uniqueness and existence of spirals moving by forced mean curvature motion , 2010, 1002.0326.

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[9]  Li-Tien Cheng,et al.  Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..

[10]  B. Fiedler,et al.  Rotating spirals of curvature flows: a center manifold approach , 2005 .

[11]  Growth Rate of Crystal Surfaces with Several Dislocation Centers , 2016, 1612.08924.

[12]  David Abend,et al.  Maximum Principles In Differential Equations , 2016 .

[13]  Takeshi Ohtsuka A level set method for spiral crystal growth , 2002 .

[14]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[15]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[16]  T. Ishiwata Crystalline motion of spiral-shaped polygonal curves with a tip motion , 2013 .

[17]  Yen-Hsi Richard Tsai,et al.  An implicit interface boundary integral method for Poisson's equation on arbitrary domains , 2013, J. Comput. Phys..

[18]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[19]  S. Goto,et al.  Uniqueness and existence of generalized motion for spiral crystal growth , 2007 .

[20]  Shape of spirals , 1998 .

[21]  T. Ogiwara,et al.  Spiral Traveling Wave Solutions of Nonlinear Diffusion Equations Related to a Model of Spiral Crystal Growth , 2003 .

[22]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[23]  儀我 美一 Surface evolution equations : a level set approach , 2006 .

[24]  H. Imai,et al.  Motion of spirals by crystalline curvature , 1999 .

[25]  Jong-Shenq Guo,et al.  On the steadily rotating spirals , 2006 .

[26]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[27]  P. Smereka Spiral crystal growth , 2000 .

[28]  R. Reid,et al.  Modeling crystal growth rates from solution , 1973 .

[29]  Yang Xiang,et al.  Level set simulations of dislocation-particle bypass mechanisms , 2004 .

[30]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[31]  Alain Karma,et al.  Spiral Surface Growth without Desorption , 1998, cond-mat/9809358.

[32]  Yang Xiang,et al.  A level set method for dislocation dynamics , 2003 .

[33]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[34]  Adam M. Oberman,et al.  Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation , 2011 .

[35]  R. Kohn,et al.  A geometric model for coarsening during spiral-mode growth of thin films , 1999 .

[36]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[37]  M. Ward,et al.  Illusory spirals and loops in crystal growth , 2013, Proceedings of the National Academy of Sciences.

[38]  Y. Giga,et al.  Hamilton-Jacobi Equations with Discontinuous Source Terms , 2011 .

[39]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .