Discrete Quantum Walks Hit Exponentially Faster

Abstract.This paper addresses the question: what processes take polynomial time on a quantum computer that require exponential time classically? We show that the hitting time of the discrete time quantum walk on the n-bit hypercube from one corner to its opposite is polynomial in n. This gives the first exponential quantum-classical gap in the hitting time of discrete quantum walks. We provide the basic framework for quantum hitting time and give two alternative definitions to set the ground for its study on general graphs. We outline a possible application to sequential packet routing.

[1]  Alexander Russell,et al.  Quantum Walks on the Hypercube , 2002, RANDOM.

[2]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[3]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[4]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[5]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2003, RANDOM-APPROX.

[6]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[7]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[8]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[9]  Osamu Watanabe,et al.  A Probabilistic 3-SAT Algorithm Further Improved , 2002, STACS.

[10]  Hiroshi Imai,et al.  Analysis of absorbing times of quantum walks , 2003 .

[11]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[12]  Rajeev Motwani,et al.  Randomized algorithms , 1996, CSUR.

[13]  Hiroshi Imai,et al.  An Analysis of Absorbing Times of Quantum Walks , 2002, UMC.

[14]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[15]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[16]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[17]  Umesh V. Vazirani,et al.  Quantum mechanical algorithms for the nonabelian hidden subgroup problem , 2001, STOC '01.

[18]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[19]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[20]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[21]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[22]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[23]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[24]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[25]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.