A Directed Genetic Algorithm for global optimization

Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and a directed mutation operator. The operation schemes of these operators borrow from the reflection and the expansion search mode of the Nelder-Mead's simplex method. First, the Taguchi method is employed to study the influence analysis of the parameters in the DGA. The results show that the parameters in the DGA have strong robustness for solving the global optimal solution. Then, several strategies are proposed to enhance the solution accuracy capability of the DGA. All of the strategies are applied to a set of 30/100-dimensional benchmark functions to prove their superiority over several genetic algorithms. Finally, a cantilevered beam design problem with constrained conditions is used as a practical structural optimization example for demonstrating the very good performance of the proposed method.

[1]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[2]  Jianmin Li,et al.  Robust design optimization with mathematical programming neural networks , 2000 .

[3]  Kusum Deep,et al.  A new mutation operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[4]  Kalyanmoy Deb,et al.  A population-based algorithm-generator for real-parameter optimization , 2005, Soft Comput..

[5]  A. Neubauer,et al.  A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[6]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[7]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Patrick Siarry,et al.  Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions , 2003, Eur. J. Oper. Res..

[10]  Hsin-Chuan Kuo,et al.  A new approach with orthogonal array for global optimization in design of experiments , 2009, J. Glob. Optim..

[11]  Anil K. Jain,et al.  Large scale feature selection using modified random mutation hill climbing , 2004, ICPR 2004.

[12]  程东峰,et al.  Wilson病与肝移植 , 2004 .

[13]  J. Périaux,et al.  Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms , 1999 .

[14]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[15]  E. Wilson,et al.  Sociobiology: The New Synthesis , 1975 .

[16]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[17]  Kalyanmoy Deb,et al.  Parallelization of binary and real-coded genetic algorithms on GPU using CUDA , 2010, IEEE Congress on Evolutionary Computation.

[18]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[21]  Adnan Acan,et al.  Enhanced particle swarm optimization through external memory support , 2005, 2005 IEEE Congress on Evolutionary Computation.

[22]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  E. Bonabeau,et al.  Swarm smarts. , 2000, Scientific American.

[25]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[26]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[27]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[29]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[30]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[31]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Imtiaz Ahmad,et al.  Particle swarm optimization for task assignment problem , 2002, Microprocess. Microsystems.

[33]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[34]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[35]  Jun Zhang,et al.  A linear map-based mutation scheme for real coded genetic algorithms , 2010, IEEE Congress on Evolutionary Computation.