Maturation of visual evoked potentials across adolescence

Adolescence represents the period of transition from childhood to adulthood and is characterized by significant changes in brain structure and function. We studied changes in the functional visual processing in the brain across adolescence. Visual evoked potentials (VEPs) to three types of pattern reversal checkerboard stimuli were measured in 90 adolescents (10-18 years) and 10 adults. Across adolescence, the N75 and P100 VEP peaks decreased in size while the N135 peak increased slightly in size. The latency of VEP peaks showed no reliable change across adolescence. The results suggest that even very basic visual sensory function continues to develop throughout adolescence. The results indicate significant changes in visual parvocellular and magnocellular pathways across adolescence.

[1]  E. Gordon,et al.  Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology , 2007, Human brain mapping.

[2]  P. Huttenlocher Synaptic density in human frontal cortex - developmental changes and effects of aging. , 1979, Brain research.

[3]  C C Wood,et al.  Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, and brain and body size. , 1983, Electroencephalography and clinical neurophysiology.

[4]  E. W. Snyder,et al.  Pattern reversal evoked potential amplitudes: life span changes. , 1981, Electroencephalography and clinical neurophysiology.

[5]  R Kakigi,et al.  Visual evoked cortical magnetic fields to pattern reversal stimulation. , 1997, Brain research. Cognitive brain research.

[6]  A. Moskowitz,et al.  Age-related changes in the latency of the visual evoked potential: Influences of check size ☆ , 1981 .

[7]  H. Semlitsch,et al.  A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. , 1986, Psychophysiology.

[8]  C C Wood,et al.  Developmental and aging changes in somatosensory, auditory and visual evoked potentials. , 1984, Electroencephalography and clinical neurophysiology.

[9]  M. Crognale,et al.  Long-term maturation of visual pathways , 2000, Visual Neuroscience.

[10]  S Tobimatsu,et al.  Age-related changes in pattern visual evoked potentials: differential effects of luminance, contrast and check size. , 1993, Electroencephalography and clinical neurophysiology.

[11]  M. Štrucl,et al.  Pattern ERG and VEP maturation in schoolchildren , 2002, Clinical Neurophysiology.

[12]  G. Celesia Evoked potential techniques in the evaluation of visual function. , 1984, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[13]  Simultaneous pattern electroretinogram and visual evoked potential recordings in dyslexic children , 1997, Documenta Ophthalmologica.

[14]  R. Oades,et al.  Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8-22 years of age. , 1997, Psychophysiology.

[15]  T. Paus Mapping brain maturation and cognitive development during adolescence , 2005, Trends in Cognitive Sciences.

[16]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[18]  Gastone G. Celesia,et al.  Visual evoked potentials and electroretinograms , 2012 .

[19]  Alan C. Evans,et al.  Brain development during childhood and adolescence: a longitudinal MRI study , 1999, Nature Neuroscience.

[20]  Jacob Cohen,et al.  A power primer. , 1992, Psychological bulletin.

[21]  A. Skoczenski,et al.  Recent advances in cortical visual impairment , 2001, Developmental medicine and child neurology.

[22]  L. Hildman,et al.  Kaufman Brief Intelligence Test , 1993 .

[23]  Vaegan,et al.  Visual evoked potentials standard (2004) , 2004, Documenta Ophthalmologica.

[24]  Tomáš Paus,et al.  Brain Development during Childhood and Adolescence , 2011 .

[25]  Andy P. Field,et al.  Discovering Statistics Using SPSS , 2000 .

[26]  U. Lindenberger,et al.  Cognitive Development , 2014, Front. Young Minds..

[27]  M. Mon-Williams,et al.  Visual evoked potentials in children with developmental coordination disorder. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[28]  N. Çelebisoy,et al.  Visual evoked potentials in children with occipital epilepsies , 2003, Brain and Development.

[29]  D. Creel,et al.  Pattern reversal evoked potentials: gender differences and age-related changes in amplitude and latency. , 1994, Electroencephalography and clinical neurophysiology.

[30]  J. Kulikowski,et al.  Pattern and movement detection in man and rabbit: Separation and comparison of occipital potentials , 1978, Vision Research.

[31]  N Nakasato,et al.  Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. , 1996, Electroencephalography and clinical neurophysiology.

[32]  N. A. Shaw,et al.  Age-dependent changes in the amplitude of the pattern visual evoked potential. , 1981, Electroencephalography and clinical neurophysiology.

[33]  V Zemon,et al.  Contrast-dependent responses in the human visual system: childhood through adulthood. , 1995, The International journal of neuroscience.

[34]  Andy Field,et al.  Discovering statistics using SPSS, 2nd ed. , 2005 .

[35]  R. Emmerson,et al.  Pattern reversal evoked potentials: age, sex and hemispheric asymmetry. , 1985, Electroencephalography and clinical neurophysiology.

[36]  P. Parzer,et al.  Pattern-reversal visual-evoked potentials in children with migraine and other primary headache: evidence for maturation disorder? , 2004, Pain.

[37]  J. Odom VISUAL EVOKED POTENTIALS STANDARD , 2004 .

[38]  D. McCulloch,et al.  Development of the human visual system: monocular and binocular pattern VEP latency. , 1991, Investigative ophthalmology & visual science.

[39]  H. Chugani A critical period of brain development: studies of cerebral glucose utilization with PET. , 1998, Preventive medicine.

[40]  M. Kuba,et al.  Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system , 2006, Vision Research.

[41]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .