An engineering approach to assess constraint effects on cleavage fracture toughness

This study presents a simplified approach to parameterize constraint effects on the fracture toughness of ferritic steels in the ductile-to-brittle transition (DBT) region under plane strain, small-scale yielding conditions for non-zero T-stress. The Weibull stress serves to couple near tip and global loading which enables scaling of macroscopic toughness values across varying constraint levels. Extensive finite element analyses then provide the relationship of vs. T/σ0, where , in closed form for four typical ferritic steels. Given the non-dimensional -function for a material, the scaling of fracture toughness values for constraint loss involves only simple function evaluations, making the method suitable for use in more global simulations of fracture events, e.g. parametric studies to exam a wide range of crack sizes, locations and loadings. The paper describes several possible applications of the -function model to correct toughness data for constraint loss, including shifts of the DBT reference temperature, T0, for the material determined according to ASTM E-1921. Comparisons of model predictions of ΔT0 are made with those determined from measured toughness data for an A515-70 steel.

[1]  K. Wallin,et al.  Fracture Toughness Transition Curve Shape for Ferritic Structural Steels , 1991 .

[2]  R. McMeeking,et al.  On criteria for J-dominance of crack-tip fields in large-scale yielding , 1979 .

[3]  J. W. Hancock,et al.  J-Dominance of short cracks in tension and bending , 1991 .

[4]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[5]  Gao,et al.  A Weibull stress model to predict cleavage fracture in plates containing surface cracks , 1999 .

[6]  Jdg Sumpter,et al.  An Experimental Investigation of the T Stress Approach , 1993 .

[7]  A. J. Carlsson,et al.  Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 1973 .

[8]  Robert H. Dodds,et al.  Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model , 2000 .

[9]  Arne S. Gullerud,et al.  WARP3D-Release 10.8: Dynamic Nonlinear Analysis of Solids using a Preconditioned Conjugate Gradient Software Architecture , 1998 .

[10]  A. G. Miller,et al.  Review of limit loads of structures containing defects , 1988 .

[11]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[12]  J. Hancock,et al.  Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields , 1991 .

[13]  M. D. German,et al.  Requirements for a one parameter characterization of crack tip fields by the HRR singularity , 1981, International Journal of Fracture.

[14]  Claudio Ruggieri,et al.  A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach , 1996 .

[15]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[16]  K. W. Schuler,et al.  Shock pulse attenuation in a nonlinear viscoelastic solid , 1973 .

[17]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[18]  F. Mudry,et al.  A local approach to cleavage fracture , 1987 .

[19]  Stanley T. Rolfe,et al.  Effects of crack depth on elastic-plastic fracture toughness , 1991 .

[20]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[21]  J. Hancock,et al.  The effect of non-singular stresses on crack-tip constraint , 1991 .

[22]  G. A. Webster,et al.  Weibull Stress Solutions for 2-D Cracks in elastic and Elastic-Plastic Materials , 1998 .

[23]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[24]  D. Munz,et al.  Estimation procedure for the Weibull parameters used in the local approach , 1992, International Journal of Fracture.

[25]  Andrew H. Sherry,et al.  COMPENDIUM OF T‐STRESS SOLUTIONS FOR TWO AND THREE DIMENSIONAL CRACKED GEOMETRIES , 1995 .

[26]  Kim Wallin,et al.  Constraint effects on reference temperature, T0, for ferritic steels in the transition region , 1998 .

[27]  T. Sham The determination of the elastic T-term using higher order weight functions , 1991 .

[28]  Claudio Ruggieri,et al.  Calibration of Weibull stress parameters using fracture toughness data , 1998 .

[29]  D. M. Parks,et al.  Advances in Characterization of Elastic-Plastic Crack-Tip Fields , 1992 .