\(\ell_{1, p}\)-Norm Regularization: Error Bounds and Convergence Rate Analysis of First-Order Methods
暂无分享,去创建一个
[1] Paul Tseng,et al. A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..
[2] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[3] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[4] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[5] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[6] P. Tseng. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .
[7] Zhi-Quan Luo,et al. On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.
[8] Jun Liu,et al. Efficient Euclidean projections in linear time , 2009, ICML '09.
[9] Ryota Tomioka,et al. Sparsity-accuracy trade-off in MKL , 2010, 1001.2615.
[10] Julien Mairal,et al. Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..
[11] Han Liu,et al. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery , 2009, ICML '09.
[12] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[13] S. M. Robinson. Some continuity properties of polyhedral multifunctions , 1981 .
[14] P. Bartlett,et al. ` p-Norm Multiple Kernel Learning , 2008 .
[15] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[16] Z.-Q. Luo,et al. Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..
[17] P. Tseng,et al. On the linear convergence of descent methods for convex essentially smooth minimization , 1992 .
[18] Paul Tseng,et al. Approximation accuracy, gradient methods, and error bound for structured convex optimization , 2010, Math. Program..
[19] Jun Liu,et al. Efficient `1=`q Norm Regularization , 2010 .
[20] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[21] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[22] Volker Roth,et al. A Complete Analysis of the l_1, p Group-Lasso , 2012, ICML.
[23] Massimo Fornasier,et al. Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..
[24] P. Bühlmann,et al. The group lasso for logistic regression , 2008 .
[25] Yonina C. Eldar,et al. Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.
[26] Lin Xiao,et al. A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem , 2012, SIAM J. Optim..
[27] Jong-Shi Pang,et al. A Posteriori Error Bounds for the Linearly-Constrained Variational Inequality Problem , 1987, Math. Oper. Res..
[28] Z. Luo,et al. On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems , 2013, Journal of the Operations Research Society of China.
[29] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[30] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[31] Chih-Jen Lin,et al. Iteration complexity of feasible descent methods for convex optimization , 2014, J. Mach. Learn. Res..
[32] R. Rockafellar,et al. Implicit Functions and Solution Mappings , 2009 .
[33] G. Minty. On the monotonicity of the gradient of a convex function. , 1964 .
[34] M. Kloft,et al. l p -Norm Multiple Kernel Learning , 2011 .
[35] Anthony Man-Cho So,et al. Non-asymptotic convergence analysis of inexact gradient methods for machine learning without strong convexity , 2013, Optim. Methods Softw..
[36] M. Kowalski. Sparse regression using mixed norms , 2009 .