Algebraic surface design with Hermite interpolation

This paper presents an efficient algorithm called Hermite interpolation, for constructing low-degree algebraic surfaces, which contain, with C1 or tangent plane continuity, any given collection of points and algebraic space curves having derivative information. Positional as well as derivative constraints on an implicitly defined algebraic surface are translated into a homogeneous linear system, where the unknowns are the coefficients of the polynomial defining the algebraic surface. Computaional details of the Hermite interpolation algorithm are presented along with several illustrative applications of the interpolation technique to construction of joining or blending surfaces for solid models as well as fleshing surfaces for curved wire frame models. A heuristic approach to interactive shape control of implicit algebraic surfaces is also given, and open problems in algebraic surface design are discussed.

[1]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[2]  Thomas W. Sederberg,et al.  Techniques for cubic algebraic surfaces , 1990, IEEE Computer Graphics and Applications.

[3]  Brian Wyvill,et al.  Interactive techniques for implicit modeling , 1990, I3D '90.

[4]  J. Warren On algebraic surfaces meeting with geometric continuity , 1986 .

[5]  Vinod Anupam,et al.  The SHILP Solid Modeling and Display Toolkit A User's Manual , 1990 .

[6]  Anthony D. DeRose Geometric Continuity: A Parameterization Independent Measure of , 1985 .

[7]  Wolfgang Dahmen,et al.  Smooth piecewise quadric surfaces , 1989 .

[8]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[9]  S. Abhyankar Algebraic Space Curves , 1971 .

[10]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[11]  R. J. Walker Algebraic curves , 1950 .

[12]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[13]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[14]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[15]  Robert E. Barnhill,et al.  Surfaces in computer aided geometric design: a survey with new results , 1985, Comput. Aided Geom. Des..

[16]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[17]  Thomas W. Sederberg Surfaces-techniques for cubic algebraic surfaces , 1990, IEEE Computer Graphics and Applications.

[18]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[19]  Joe D. Warren,et al.  Blending algebraic surfaces , 1989, TOGS.

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .

[21]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[22]  Insung Ihm,et al.  Higher-order interpolation and least-squares approximation using implicit algebraic surfaces , 1993, TOGS.

[23]  Alan E. Middleditch,et al.  Blend surfaces for set theoretic volume modelling systems , 1985, SIGGRAPH '85.

[24]  Pat Hanrahan,et al.  Ray tracing algebraic surfaces , 1983, SIGGRAPH.

[25]  Chandrajit L. Bajaj,et al.  Generation of Configuration Space Obstacles: Moving Algebraic Surfaces , 1990, Int. J. Robotics Res..

[26]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[27]  Chandrajit L. Bajaj,et al.  Geometric Modeling with Algebraic Surfaces , 1988, IMA Conference on the Mathematics of Surfaces.

[28]  Chandrajit L. Bajaj,et al.  Tracing surface intersections , 1988, Comput. Aided Geom. Des..

[29]  A. Derose Geometric continuity: a parametrization independent measure of continuity for computer aided geometric design (curves, surfaces, splines) , 1985 .

[30]  J. Hopcroft,et al.  Quadratic blending surfaces , 1985 .