IETI – Isogeometric Tearing and Interconnecting
暂无分享,去创建一个
Bert Jüttler | Clemens Pechstein | Stefan K. Kleiss | Satyendra Tomar | B. Jüttler | S. Tomar | C. Pechstein
[1] Liping Liu. THEORY OF ELASTICITY , 2012 .
[2] C. Farhat,et al. Optimal convergence properties of the FETI domain decomposition method , 1994 .
[3] T. Hughes,et al. B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .
[4] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[5] Tom Lyche,et al. Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .
[6] G. Sangalli,et al. IsoGeometric Analysis using T-splines , 2012 .
[7] Olof B. Widlund,et al. Dual‐primal FETI methods for linear elasticity , 2006 .
[8] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[9] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[10] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[11] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[12] Olaf Steinbach,et al. Boundary Element Tearing and Interconnecting Methods , 2003, Computing.
[13] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[14] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[15] Bert Jüttler,et al. Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .
[16] Régis Duvigneau,et al. Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .
[17] Niels Leergaard Pedersen,et al. Discretizations in isogeometric analysis of Navier-Stokes flow , 2011 .
[18] O. Widlund,et al. FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .
[19] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[20] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[21] J. Mandel,et al. Convergence of a substructuring method with Lagrange multipliers , 1994 .
[22] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[23] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[24] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[25] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[26] Bert Jüttler,et al. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .
[27] Elaine Cohen,et al. Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.
[28] D. Rixen,et al. FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .
[29] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[30] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[31] Luca F. Pavarino,et al. Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains , 2008 .
[32] Chang-Ock Lee,et al. A Preconditioner for the FETI-DP Formulation with Mortar Methods in Two Dimensions , 2004, SIAM J. Numer. Anal..
[33] Olaf Steinbach,et al. The all-floating boundary element tearing and interconnecting method , 2009, J. Num. Math..
[34] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[35] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[36] Jan Mandel,et al. On the convergence of a dual-primal substructuring method , 2000, Numerische Mathematik.
[37] U. Langer,et al. Coupled Finite and Boundary Element Tearing and Interconnecting solvers for nonlinear potential problems , 2006 .
[38] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[39] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[40] Olof B. Widlund,et al. DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .
[41] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[42] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[43] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[44] Daniel Rixen,et al. Preconditioning the FETI Method for Problems with Intra- and Inter-Subdomain Coefficient Jumps , 1997 .
[45] Z. Dostál,et al. Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE , 2006 .
[46] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[47] S. Timoshenko,et al. Theory of Elasticity (3rd ed.) , 1970 .
[48] Bert Jüttler,et al. Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines , 2010, Curves and Surfaces.
[49] Elaine Cohen,et al. Volumetric parameterization of complex objects by respecting multiple materials , 2010, Comput. Graph..
[50] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[51] Olof B. Widlund,et al. A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..
[52] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[53] M. Scott,et al. On the Nesting Behavior of T-splines , 2011 .
[54] G. Sangalli,et al. IsoGeometric analysis using T-splines on two-patch geometries , 2011 .
[55] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[56] C. Farhat,et al. A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .
[57] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .