Bound-Constrained Polynomial Optimization Using Only Elementary Calculations

We provide a monotone nonincreasing sequence of upper bounds fkH(k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube in ℝn. The novelty with respect to the converging sequence of upper bounds in Lasserre [Lasserre JB (2010) A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21:864–885] is that only elementary computations are required. For optimization over the hypercube [0, 1]n, we show that the new bounds fkH have a rate of convergence in O(1/k). Moreover, we show a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for polynomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at the cost of O(kn) function evaluations, while the new bound fkH needs only O(nk) elementary calculations.

[1]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[2]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[3]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[4]  Etienne de Klerk,et al.  An Error Analysis for Polynomial Optimization over the Simplex Based on the Multivariate Hypergeometric Distribution , 2015, SIAM J. Optim..

[5]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  Philip E. Gill,et al.  Practical optimization , 1981 .

[8]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[9]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[10]  Etienne de Klerk,et al.  Global optimization of rational functions: a semidefinite programming approach , 2006, Math. Program..

[11]  Pablo A. Parrilo,et al.  A PTAS for the minimization of polynomials of fixed degree over the simplex , 2006, Theor. Comput. Sci..

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  Etienne de Klerk,et al.  Error Bounds for Some Semidefinite Programming Approaches to Polynomial Minimization on the Hypercube , 2010, SIAM J. Optim..

[14]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[15]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[16]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[17]  D. Handelman Representing polynomials by positive linear functions on compact convex polyhedra. , 1988 .

[18]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[19]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[20]  R. Fletcher Practical Methods of Optimization , 1988 .

[21]  Pál László,et al.  Global optimization algorithmsfor bound constrained problems , 2011 .

[22]  Julian Romero,et al.  Semidefinite Approximations of Conical Hulls of Measured Sets , 2014, Discret. Comput. Geom..

[23]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[24]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[25]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[26]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .