Bond Synergy Model for Bond Energies in Alloy Oxides

In this work we introduce a metal-oxide bond-energy model for alloy oxides based on pure-phase bond energies and bond synergy factors that describe the effect of alloying on the bond energy between cations and oxygen, an important quantity to understand formation and stability of passive films. This model is parameterized for binary cation-alloy oxides using density-functional theory energies and is shown to be directly transferable to multi-component alloy oxides. We parameterized the model for alloy oxide energies with metal cations that form the basis of corrosion resistant alloys, including Fe, Ni, Cr, Mo, Mn, W, Co, and Ru. We find that isoelectronic solutes allow quantification of pure-phase bond energies in oxides and that the calculated bond energy values give sensible results compared to common experience, including the role of Cr as the passive-layer former in Fe-Ni-Cr alloys for corrosion applications. Additionally, the bond synergy factors give insights into the mutual strengthening and weakening effects of alloying on cation-oxygen bonds and can be related to enthalpy of mixing and charge neutrality constraints. We demonstrate how charge neutrality can be identified and achieved by the oxidation states that the different cations assume depending on alloy composition and the presence of defects.

[1]  J. Saal,et al.  Communication—Dissolution and Passivation of a Ni-Cr-Fe-Ru-Mo-W High Entropy Alloy by Elementally Resolved Electrochemistry , 2020 .

[2]  J. Scully,et al.  Progress in Understanding the Origins of Excellent Corrosion Resistance in Metallic Alloys: From Binary Polycrystalline Alloys to Metallic Glasses and High Entropy Alloys , 2020 .

[3]  J. Saal,et al.  Computational design and initial corrosion assessment of a series of non-equimolar high entropy alloys , 2019, Scripta Materialia.

[4]  J. Scully,et al.  Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion , 2019, Current Opinion in Solid State and Materials Science.

[5]  J. Saal,et al.  Localized corrosion behavior of a single-phase non-equimolar high entropy alloy , 2019, Electrochimica Acta.

[6]  W. Windl,et al.  Bond-Order Bond Energy Model for Alloys , 2019, Acta Materialia.

[7]  Pin Lu,et al.  Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions , 2019, Acta Materialia.

[8]  W. Windl,et al.  Ferromagnetic Epitaxial μ-Fe2O3 on β-Ga2O3: A New Monoclinic Form of Fe2O3 , 2019, Crystal Growth & Design.

[9]  C. Niu,et al.  Multi-cell Monte Carlo method for phase prediction , 2018, npj Computational Materials.

[10]  T. Rahman,et al.  Oxidation states of binary oxides from data analytics of the electronic structure , 2018, Computational Materials Science.

[11]  C. Catlow,et al.  Oxidation states and ionicity , 2018, Nature Materials.

[12]  Pin Lu,et al.  Computational materials design of a corrosion resistant high entropy alloy for harsh environments , 2018, Scripta Materialia.

[13]  S. Gin,et al.  A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals , 2018, npj Materials Degradation.

[14]  P. Voorhees,et al.  Nonequilibrium Solute Capture in Passivating Oxide Films. , 2018, Physical review letters.

[15]  Christopher D. Taylor,et al.  Integrated computational materials engineering of corrosion resistant alloys , 2018, npj Materials Degradation.

[16]  Karin A. Dahmen,et al.  Corrosion of Al xCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior , 2017 .

[17]  C. Niu,et al.  Multi-Cell Monte Carlo Relaxation method for predicting phase stability of alloys , 2017 .

[18]  Jincheng Du,et al.  Development of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses , 2016 .

[19]  Albert K. Dearden,et al.  When Density Functional Approximations Meet Iron Oxides. , 2016, Journal of chemical theory and computation.

[20]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[21]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[22]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[23]  W. Windl,et al.  Independent ordering of two interpenetrating magnetic sublattices in the double perovskite Sr2CoOsO6. , 2013, Journal of the American Chemical Society.

[24]  H. Fuh,et al.  Study of the half-metallic materials double perovskites Sr2ZnBO6 (B=Tc, Re, Ru, Os, Co, Pd, and Au) via first-principle calculations , 2013 .

[25]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[26]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[27]  Shun-Li Shang,et al.  First-principles lattice dynamics, thermodynamics, and elasticity of Cr2O3 , 2012 .

[28]  W. Windl,et al.  Ca2MnRuO6: Magnetic Order Arising from Chemical Chaos , 2012 .

[29]  Alexis T Bell,et al.  Calibration of the DFT/GGA+U Method for Determination of Reduction Energies for Transition and Rare Earth Metal Oxides of Ti, V, Mo, and Ce. , 2011, Journal of chemical theory and computation.

[30]  E. Mccafferty Introduction to Corrosion Science , 2010 .

[31]  A. Janotti,et al.  Evolution of the electronic structure of a ferromagnetic metal: Case of SrRuO 3 , 2009 .

[32]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Georg Kresse,et al.  Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations , 2007 .

[34]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[35]  Georg Kresse,et al.  Molecular adsorption on the surface of strongly correlated transition-metal oxides: A case study for CO/NiO(100) , 2004 .

[36]  D. Landolt,et al.  Passive films on stainless steels—chemistry, structure and growth , 2003 .

[37]  P. Nicholson,et al.  The ionicity of binary oxides and silicates , 1999 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  M. Itoh,et al.  Growth process of protective oxides formed on type 304 and 430 stainless steels at 1273 K , 1998 .

[40]  H. Okamoto Cr-O (chromium-oxygen) , 1997 .

[41]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[42]  P. Marcus On some fundamental factors in the effect of alloying elements on passivation of alloys , 1994 .

[43]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[44]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[45]  H. Wriedt The Fe-O (Iron-Oxygen) System , 1991 .

[46]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[47]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[48]  A. Stoneham,et al.  Ionicity in solids , 1983 .

[49]  D. Schwarzenbach,et al.  Electric field gradients and charge density in corundum, α-Al2O3 , 1982 .

[50]  Yosiko Sato,et al.  Hydrostatic compression of four corundum‐type compounds: α‐Al2O3, V2O3, Cr2O3, and α‐Fe2O3 , 1979 .

[51]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[52]  J. Kruger,et al.  Nature of passive films on iron-chromium alloys , 1972 .

[53]  Tyler J. Harrington,et al.  A new class of high-entropy perovskite oxides , 2018 .

[54]  Alán Aspuru-Guzik,et al.  Prediction and Calculation of Crystal Structures: Methods and Applications , 2014 .

[55]  Geoffroy Hautier,et al.  Data mining approaches to high-throughput crystal structure and compound prediction. , 2014, Topics in current chemistry.

[56]  Zaki Ahmad,et al.  INTRODUCTION TO CORROSION , 2006 .

[57]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[58]  H. Fischmeister,et al.  The passivity of iron-chromium alloys , 1989 .

[59]  J. Hafner Alloy Phase Diagrams , 1987 .

[60]  Marcel Pourbaix,et al.  Introduction to Corrosion , 1973 .

[61]  Ontima Yamchuti Oxidation states of trace elements in synthetic corundum , 2022 .