Autophagy and apoptosis dysfunction in neurodegenerative disorders

Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.

[1]  P. Caroni,et al.  A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice , 2009, Nature Neuroscience.

[2]  A. Yakovlev,et al.  Differential Expression of Apoptotic Protease-Activating Factor-1 and Caspase-3 Genes and Susceptibility to Apoptosis during Brain Development and after Traumatic Brain Injury , 2001, The Journal of Neuroscience.

[3]  Maciej Kurpisz,et al.  Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications , 2008, Journal of Molecular Medicine.

[4]  Dafydd G. Thomas,et al.  Huntingtin interacting protein 1 is a novel brain tumor marker that associates with epidermal growth factor receptor. , 2007, Cancer research.

[5]  Roman Jaksik,et al.  Autophagy, Apoptosis, Mitoptosis and Necrosis: Interdependence Between Those Pathways and Effects on Cancer , 2013, Archivum Immunologiae et Therapiae Experimentalis.

[6]  M. Rehm,et al.  The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies. , 2011, Current molecular medicine.

[7]  Ana Maria Cuervo,et al.  Protein degradation and aging , 2005, Experimental Gerontology.

[8]  L. Martin Mitochondrial pathobiology in ALS , 2011, Journal of bioenergetics and biomembranes.

[9]  M. Mattson,et al.  Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession , 2013, Neurobiology of Aging.

[10]  Kostas Vekrellis,et al.  Wild Type α-Synuclein Is Degraded by Chaperone-mediated Autophagy and Macroautophagy in Neuronal Cells* , 2008, Journal of Biological Chemistry.

[11]  K. Roth,et al.  CHOP Potentially Co-Operates with FOXO3a in Neuronal Cells to Regulate PUMA and BIM Expression in Response to ER Stress , 2012, PloS one.

[12]  J. Grosskreutz,et al.  Calcium dysregulation in amyotrophic lateral sclerosis. , 2010, Cell calcium.

[13]  E. Zalckvar,et al.  A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. , 2006, Molecular cell.

[14]  J. Sweatt,et al.  Cognitive neuroepigenetics: A role for epigenetic mechanisms in learning and memory , 2011, Neurobiology of Learning and Memory.

[15]  L. Kirshenbaum,et al.  Striking a Balance: Autophagy, Apoptosis, and Necrosis in a Normal and Failing Heart , 2012, Current Hypertension Reports.

[16]  H. Fukui,et al.  The Striatum Is Highly Susceptible to Mitochondrial Oxidative Phosphorylation Dysfunctions , 2011, The Journal of Neuroscience.

[17]  Christopher A Ross,et al.  N-Terminal Proteolysis of Full-Length Mutant Huntingtin in an Inducible PC12 Cell Model of Huntington’s Disease , 2007, Cell cycle.

[18]  M. Raff,et al.  Programmed Cell Death in Animal Development , 1997, Cell.

[19]  H. Steller,et al.  Programmed Cell Death in Animal Development and Disease , 2011, Cell.

[20]  S. Nataf,et al.  ER stress inhibits neuronal death by promoting autophagy , 2012, Autophagy.

[21]  D. Sulzer,et al.  Constitutive Upregulation of Chaperone-Mediated Autophagy in Huntington's Disease , 2011, The Journal of Neuroscience.

[22]  L. Breydo,et al.  Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice , 2012, Molecular Neurodegeneration.

[23]  D. Rubinsztein,et al.  Deletion of the Huntingtin Polyglutamine Stretch Enhances Neuronal Autophagy and Longevity in Mice , 2010, PLoS genetics.

[24]  S. Wesselborg,et al.  Role of BNIP3 in TNF-induced cell death--TNF upregulates BNIP3 expression. , 2009, Biochimica et biophysica acta.

[25]  G. Gores,et al.  TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent , 2004 .

[26]  R. Nixon,et al.  Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer's disease. , 2008, The American journal of pathology.

[27]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[28]  al. et,et al.  Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice , 1995, Science.

[29]  S. Korsmeyer,et al.  Widespread Elimination of Naturally Occurring Neuronal Death inBax-Deficient Mice , 1998, The Journal of Neuroscience.

[30]  C. Oliveira,et al.  Amyloid-β-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway. , 2011, Journal of Alzheimer's disease : JAD.

[31]  W. Le,et al.  Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis , 2013, Acta Pharmacologica Sinica.

[32]  D. Rubinsztein,et al.  Mechanisms of cross‐talk between the ubiquitin‐proteasome and autophagy‐lysosome systems , 2010, FEBS letters.

[33]  Tony Wyss-Coray,et al.  Inflammation in Alzheimer disease: driving force, bystander or beneficial response? , 2006, Nature Medicine.

[34]  Keisuke Kuida,et al.  Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice , 1996, Nature.

[35]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[36]  T. Vanden Berghe,et al.  Programmed necrosis from molecules to health and disease. , 2011, International review of cell and molecular biology.

[37]  I. Mook‐Jung,et al.  Mitochondria-Specific Accumulation of Amyloid β Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death , 2012, PloS one.

[38]  G. Halliday,et al.  A possible role for humoral immunity in the pathogenesis of Parkinson's disease. , 2005, Brain : a journal of neurology.

[39]  C. Bendotti,et al.  A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases , 2010, Autophagy.

[40]  S. W. Davies,et al.  Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? , 1998, The Lancet.

[41]  Hong-Gang Wang,et al.  Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy , 2011, Autophagy.

[42]  G. Kroemer,et al.  Lysosomal membrane permeabilization in cell death , 2008, Oncogene.

[43]  C. Hetz,et al.  The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis , 2007, Cell Death and Differentiation.

[44]  Y. Kawahara,et al.  Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis , 2005, Journal of Molecular Medicine.

[45]  O. Kepp,et al.  Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study , 2011, Oncogene.

[46]  K. Chung,et al.  The role of ubiquitin linkages on α‐synuclein induced‐toxicity in a Drosophila model of Parkinson’s disease , 2009, Journal of neurochemistry.

[47]  Eugene M. Johnson,et al.  MIXED LINEAGE KINASE INHIBITOR CEP- 1347 FAILS TO DELAY DISABILITY IN EARLY PARKINSON DISEASE , 2008, Neurology.

[48]  Sangsik Lee,et al.  The roles of FADD in extrinsic apoptosis and necroptosis. , 2012, BMB reports.

[49]  Yuzhi Chen,et al.  Amyloid precursor protein modulates β-catenin degradation , 2007, Journal of Neuroinflammation.

[50]  R. Nixon,et al.  Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Fred H. Gage,et al.  Mechanisms Underlying Inflammation in Neurodegeneration , 2010, Cell.

[52]  W. Kukull,et al.  Lost in translation: epidemiology, risk, and Alzheimer disease. , 2010, Archives of neurology.

[53]  K. Wada,et al.  Degradation of Amyotrophic Lateral Sclerosis-linked Mutant Cu,Zn-Superoxide Dismutase Proteins by Macroautophagy and the Proteasome* , 2006, Journal of Biological Chemistry.

[54]  Brian Spencer,et al.  The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. , 2008, The Journal of clinical investigation.

[55]  P. Shaw,et al.  Molecular and cellular pathways of neurodegeneration in motor neurone disease , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[56]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[57]  J. Castro,et al.  Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Daniela Galimberti,et al.  Inflammation and oxidative damage in Alzheimer's disease: friend or foe? , 2011, Frontiers in Bioscience.

[59]  C. Liang,et al.  Neural-specific Deletion of FIP200 Leads to Cerebellar Degeneration Caused by Increased Neuronal Death and Axon Degeneration* , 2009, The Journal of Biological Chemistry.

[60]  J. Landry,et al.  HspB8 Chaperone Activity toward Poly(Q)-containing Proteins Depends on Its Association with Bag3, a Stimulator of Macroautophagy* , 2008, Journal of Biological Chemistry.

[61]  V. Deretic,et al.  Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages , 2004, Cell.

[62]  J. Yates,et al.  Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 , 2012, Nature.

[63]  G. van Dijk,et al.  Inflammation and NF-kappaB in Alzheimer's disease and diabetes. , 2009, Journal of Alzheimer's disease : JAD.

[64]  L. Tremolizzo,et al.  A panel of macroautophagy markers in lymphomonocytes of patients with amyotrophic lateral sclerosis , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[65]  S. Ghavami,et al.  Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. , 2012, American journal of physiology. Lung cellular and molecular physiology.

[66]  W. Le,et al.  Altered macroautophagy in the spinal cord of SOD1 mutant mice , 2008, Autophagy.

[67]  S. Imam,et al.  Molecular Aspects of Dopaminergic Neurodegeneration: Gene-Environment Interaction in Parkin Dysfunction , 2011, International journal of environmental research and public health.

[68]  C. Stroh,et al.  The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells. , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[69]  Sandra Barth,et al.  Autophagy: cellular and molecular mechanisms , 2010, The Journal of pathology.

[70]  J. Trempe,et al.  Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection , 2013, Front. Neurol..

[71]  R. Xavier,et al.  Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease , 2010, Proceedings of the National Academy of Sciences.

[72]  D. Ferrari,et al.  Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. , 2002, Molecular biology of the cell.

[73]  W. Scheper,et al.  Removing protein aggregates: the role of proteolysis in neurodegeneration. , 2011, Current medicinal chemistry.

[74]  G. Brewer,et al.  Autophagy in aging and Alzheimer's disease: pathologic or protective? , 2011, Journal of Alzheimer's disease : JAD.

[75]  Xiaomin Song,et al.  Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice , 2009, Proceedings of the National Academy of Sciences.

[76]  D. Averill-Bates,et al.  Activation of ER stress and apoptosis by hydrogen peroxide in HeLa cells: protective role of mild heat preconditioning at 40°C. , 2011, Biochimica et biophysica acta.

[77]  Xin Wang The Antiapoptotic Activity of Melatonin in Neurodegenerative Diseases , 2009, CNS neuroscience & therapeutics.

[78]  W. Dauer,et al.  The Parkinson Disease Protein Leucine-Rich Repeat Kinase 2 Transduces Death Signals via Fas-Associated Protein with Death Domain and Caspase-8 in a Cellular Model of Neurodegeneration , 2009, The Journal of Neuroscience.

[79]  P. Davies,et al.  Novel synthetic small‐molecule activators of AMPK as enhancers of autophagy and amyloid‐β peptide degradation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[81]  K. Nave,et al.  Reduced oxidative damage in ALS by high‐dose enteral melatonin treatment , 2006, Journal of pineal research.

[82]  T. Cai,et al.  α-Synuclein overexpression during manganese-induced apoptosis in SH-SY5Y neuroblastoma cells , 2010, Brain Research Bulletin.

[83]  A. Kupsch,et al.  Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. , 2007, Archives of neurology.

[84]  Kuninori Suzuki Selective autophagy in budding yeast , 2012, Cell Death and Differentiation.

[85]  Marek J. Łos,et al.  Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. , 2013, Biochimica et biophysica acta.

[86]  Charanjit Kaur,et al.  Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes , 2012, Neurotoxicity Research.

[87]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[88]  F. Joó,et al.  Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis , 1996, Annals of neurology.

[89]  Min-Ju Kim,et al.  Pyridoxal‐5′‐phosphate phosphatase/chronophin induces astroglial apoptosis via actin‐depolymerizing factor/cofilin system in the rat brain following status epilepticus , 2010, Glia.

[90]  K. Chung,et al.  Huntingtin‐interacting protein 1‐mediated neuronal cell death occurs through intrinsic apoptotic pathways and mitochondrial alterations , 2006, FEBS letters.

[91]  G. Shore,et al.  The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family , 2008, Oncogene.

[92]  Francesco Cecconi,et al.  Apaf1 (CED-4 Homolog) Regulates Programmed Cell Death in Mammalian Development , 1998, Cell.

[93]  O. Shirihai,et al.  The interplay between mitochondrial dynamics and mitophagy. , 2011, Antioxidants & redox signaling.

[94]  A. Diaspro,et al.  Amyloid Precursor Protein and Presenilin1 Interact with the Adaptor GRB2 and Modulate ERK 1,2 Signaling* , 2007, Journal of Biological Chemistry.

[95]  Dong-Kug Choi,et al.  Blockade of Microglial Activation Is Neuroprotective in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson Disease , 2002, The Journal of Neuroscience.

[96]  M. Ebadi,et al.  Neuroprotective actions of selegiline , 2002, Journal of neuroscience research.

[97]  T. Chittenden,et al.  Gene expression during ER stress–induced apoptosis in neurons , 2003, The Journal of cell biology.

[98]  Nicholas E. Bruns,et al.  A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy , 2008, Proceedings of the National Academy of Sciences.

[99]  Liang Li,et al.  Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis , 2011, Autophagy.

[100]  Elena Cattaneo,et al.  Normal huntingtin function: an alternative approach to Huntington's disease , 2005, Nature Reviews Neuroscience.

[101]  P. Carvey,et al.  Tumor Necrosis Factor α Is Toxic to Embryonic Mesencephalic Dopamine Neurons , 2001, Experimental Neurology.

[102]  G. Melino,et al.  Cell death pathology: perspective for human diseases. , 2011, Biochemical and biophysical research communications.

[103]  Wei Li,et al.  The Melatonin MT1 Receptor Axis Modulates Mutant Huntingtin-Mediated Toxicity , 2011, The Journal of Neuroscience.

[104]  H. Hara,et al.  Apoptosis‐Inducing Factor and Cyclophilin A Cotranslocate to the Motor Neuronal Nuclei in Amyotrophic Lateral Sclerosis Model Mice , 2011, CNS neuroscience & therapeutics.

[105]  David A. Smith,et al.  Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. , 2003, Brain : a journal of neurology.

[106]  M. Hayden,et al.  Wild‐type huntingtin protects neurons from excitotoxicity , 2006, Journal of neurochemistry.

[107]  W. Chazin,et al.  S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. , 2008, Biochimica et biophysica acta.

[108]  J. J. Mul,et al.  Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis , 2007, Nature Cell Biology.

[109]  M. Lenardo,et al.  Autophagic cell death. , 2009, Methods in enzymology.

[110]  Keisuke Kuida,et al.  Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis , 2006, Science.

[111]  M. Pallàs,et al.  An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders , 2010, Expert opinion on investigational drugs.

[112]  B. Liu,et al.  Distinct Role for Microglia in Rotenone-Induced Degeneration of Dopaminergic Neurons , 2002, The Journal of Neuroscience.

[113]  Kostas Vekrellis,et al.  Pathological roles of α-synuclein in neurological disorders , 2011, The Lancet Neurology.

[114]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[115]  T. Montine,et al.  Biomarkers of oxidative damage and inflammation in Alzheimer's disease. , 2010, Biomarkers in medicine.

[116]  G. Kroemer,et al.  Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? , 2002, Journal of Cell Science.

[117]  Y. Uchiyama Autophagic cell death and its execution by lysosomal cathepsins. , 2001, Archives of histology and cytology.

[118]  Asaf Rotem,et al.  The mitochondrial ARTS protein promotes apoptosis through targeting XIAP , 2004, The EMBO journal.

[119]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[120]  E. Masliah,et al.  Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases , 2007, NeuroMolecular Medicine.

[121]  Mark D. Johnson,et al.  Contribution of p53-Dependent Caspase Activation to Neuronal Cell Death Declines with Neuronal Maturation , 1999, The Journal of Neuroscience.

[122]  L. Raymond,et al.  Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice , 2010, Neuron.

[123]  S. Korsmeyer,et al.  BAX Is Required for Neuronal Death after Trophic Factor Deprivation and during Development , 1996, Neuron.

[124]  L. Mucke,et al.  Alzheimer Mechanisms and Therapeutic Strategies , 2012, Cell.

[125]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[126]  J. Lane,et al.  Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis , 2009, Journal of Cell Science.

[127]  A. Hackam,et al.  Huntingtin Interacting Protein 1 Induces Apoptosis via a Novel Caspase-dependent Death Effector Domain* , 2000, The Journal of Biological Chemistry.

[128]  M. Miura Apoptotic and Non-apoptotic Caspase Functions in Neural Development , 2011, Neurochemical Research.

[129]  Judith A. Potashkin,et al.  The Promise of Neuroprotective Agents in Parkinson’s Disease , 2011, Front. Neur..

[130]  S. Schreiber,et al.  Small Molecule Enhancers of Rapamycin-Induced TOR Inhibition Promote Autophagy, Reduce Toxicity in Huntington’s Disease Models and Enhance Killing of Mycobacteria by Macrophages , 2007, Autophagy.

[131]  M. Ciotti,et al.  Role of the autophagic‐lysosomal system on low potassium‐induced apoptosis in cultured cerebellar granule cells , 2005, Journal of neurochemistry.

[132]  Leonidas Stefanis,et al.  Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. , 2004, Science.

[133]  K. Roth,et al.  Deficiency of Pro-apoptotic Hrk Attenuates Programmed Cell Death in the Developing Murine Nervous System but Does Not Affect Bcl-x Deficiency-Induced Neuron Apoptosis , 2011, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[134]  A. Hackam,et al.  Inhibiting Caspase Cleavage of Huntingtin Reduces Toxicity and Aggregate Formation in Neuronal and Nonneuronal Cells* , 2000, The Journal of Biological Chemistry.

[135]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[136]  G. Kreutzberg Microglia: a sensor for pathological events in the CNS , 1996, Trends in Neurosciences.

[137]  D. Rubinsztein,et al.  Huntington's disease: molecular basis of neurodegeneration , 2003, Expert Reviews in Molecular Medicine.

[138]  R. Quirion,et al.  α7 Nicotinic receptor activation reduces β‐amyloid‐induced apoptosis by inhibiting caspase‐independent death through phosphatidylinositol 3‐kinase signaling , 2011, Journal of neurochemistry.

[139]  Sudeshna Dutta,et al.  Autophagic programmed cell death by selective catalase degradation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[140]  C. Hetz,et al.  XBP-1 deficiency in the nervous system reveals a homeostatic switch to activate autophagy , 2009, Autophagy.

[141]  A. Hackam,et al.  Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi , 2002, Nature Cell Biology.

[142]  Mark R. Segal,et al.  Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death , 2004, Nature.

[143]  Liang-Jun Yan,et al.  Telomere Shortening and Alzheimer’s Disease , 2012, NeuroMolecular Medicine.

[144]  Takeshi Kimura,et al.  Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice. , 2011, Journal of molecular and cellular cardiology.

[145]  T. Veenstra,et al.  Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin , 2009, Nature Cell Biology.

[146]  R. Youle,et al.  Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. , 2012, Developmental cell.

[147]  Sooyeon Lee,et al.  Lysosomal Proteolysis Inhibition Selectively Disrupts Axonal Transport of Degradative Organelles and Causes an Alzheimer's-Like Axonal Dystrophy , 2011, The Journal of Neuroscience.

[148]  Werner Poewe,et al.  A double-blind, delayed-start trial of rasagiline in Parkinson's disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes , 2011, The Lancet Neurology.

[149]  Guido Kroemer,et al.  The end of autophagic cell death? , 2012, Autophagy.

[150]  M. Vila,et al.  Mitochondrial quality control and dynamics in Parkinson's disease. , 2012, Antioxidants & redox signaling.

[151]  P. Cascio,et al.  Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome , 2005, Neurobiology of Disease.

[152]  K. Schulze-Osthoff,et al.  The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. , 1999, Immunity.

[153]  B. Li,et al.  The KDEL receptor induces autophagy to promote the clearance of neurodegenerative disease-related proteins , 2011, Neuroscience.

[154]  R. Rodenburg,et al.  Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance , 2011, Journal of Cell Science.

[155]  C. Hetz ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. , 2007, Antioxidants & redox signaling.

[156]  C. Raine,et al.  Multiple sclerosis: immune system molecule expression in the central nervous system. , 1994, Journal of neuropathology and experimental neurology.

[157]  Yoshiaki Kamada,et al.  Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. , 2005, Molecular biology of the cell.

[158]  M. Cuzner,et al.  Microglia are the major cell type expressing MHC class II in human white matter , 1987, Journal of the Neurological Sciences.

[159]  P. Mcgeer,et al.  Inflammatory processes in amyotrophic lateral sclerosis , 2002, Muscle & nerve.

[160]  Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease , 2007, Neurology.

[161]  L. Martin,et al.  Opportunities for neuroprotection in ALS using cell death mechanism rationales , 2004 .

[162]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[163]  Sudha Seshadri,et al.  Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study , 2007, The Lancet Neurology.

[164]  J. Nutt,et al.  A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. , 2002, Archives of neurology.

[165]  Andre Fischer,et al.  SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis , 2007, The EMBO journal.

[166]  G. Schiavo,et al.  Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration , 2008, Current Opinion in Neurobiology.

[167]  I. Dixon,et al.  Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. , 2012, Biochimica et biophysica acta.

[168]  C. Oliveira,et al.  ER stress is involved in Aβ‐induced GSK‐3β activation and tau phosphorylation , 2008, Journal of neuroscience research.

[169]  T. Tabira,et al.  Sendai virus vector‐mediated brain‐derived neurotrophic factor expression ameliorates memory deficits and synaptic degeneration in a transgenic mouse model of Alzheimer's disease , 2012, Journal of neuroscience research.

[170]  C. Fall,et al.  Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. , 1997, Biochimica et biophysica acta.

[171]  L. Blackhall Amyotrophic lateral sclerosis and palliative care: Where we are, and the road ahead , 2012, Muscle & nerve.

[172]  Junying Yuan,et al.  Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β , 2000, Nature.

[173]  R. Hammer,et al.  Adult Apaf-1-deficient mice exhibit male infertility. , 2000, Developmental biology.

[174]  Y. Suh,et al.  Minocycline and neurodegenerative diseases , 2009, Behavioural Brain Research.

[175]  A. Cuervo Chaperone-mediated autophagy: Dice's 'wild' idea about lysosomal selectivity , 2011, Nature Reviews Molecular Cell Biology.

[176]  X. Qiao,et al.  Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase , 2013, Neurochemistry International.

[177]  G. Gores,et al.  TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. , 2004, American journal of physiology. Gastrointestinal and liver physiology.

[178]  A. Fazaeli,et al.  Functional Polymorphisms of FAS and FASL Gene and Risk of Breast Cancer – Pilot Study of 134 Cases , 2013, PloS one.

[179]  C. Gong,et al.  Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells , 2012, Oncogene.

[180]  T. Ogura,et al.  Recent advances in p97/VCP/Cdc48 cellular functions. , 2012, Biochimica et biophysica acta.

[181]  D. Sulzer,et al.  CARGO RECOGNITION FAILURE IS RESPONSIBLE FOR INEFFICIENT AUTOPHAGY IN HUNTINGTON’S DISEASE , 2010, Nature Neuroscience.

[182]  S. Snyder,et al.  Rhes, a Striatal Specific Protein, Mediates Mutant-Huntingtin Cytotoxicity , 2009, Science.

[183]  M. DiFiglia,et al.  Huntingtin Expression Stimulates Endosomal–Lysosomal Activity, Endosome Tubulation, and Autophagy , 2000, The Journal of Neuroscience.

[184]  E. Masliah,et al.  Beclin 1 Gene Transfer Activates Autophagy and Ameliorates the Neurodegenerative Pathology in α-Synuclein Models of Parkinson's and Lewy Body Diseases , 2009, The Journal of Neuroscience.

[185]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[186]  Rainer Duden,et al.  Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. , 2002, Human molecular genetics.

[187]  D. Rubinsztein,et al.  Trehalose, a Novel mTOR-independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein* , 2007, Journal of Biological Chemistry.

[188]  Y. Akao,et al.  Neuroprotection by propargylamines in Parkinson's disease: suppression of apoptosis and induction of prosurvival genes. , 2002, Neurotoxicology and teratology.

[189]  H. Gendelman,et al.  Innate and adaptive immunity for the pathobiology of Parkinson's disease. , 2009, Antioxidants & redox signaling.

[190]  Francesco Scaravilli,et al.  Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease , 2004, Nature Genetics.

[191]  Thomas Meitinger,et al.  Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology , 2004, Neuron.

[192]  J Q Trojanowski,et al.  Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[193]  N. Nukina,et al.  Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein , 2010, Nature Biotechnology.

[194]  S. Ghavami,et al.  Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. , 2007, European journal of pharmacology.

[195]  M. Horne,et al.  Bim Links ER Stress and Apoptosis in Cells Expressing Mutant SOD1 Associated with Amyotrophic Lateral Sclerosis , 2012, PloS one.

[196]  B. Fox,et al.  β-Amyloid1–42 Induces Neuronal Death through the p75 Neurotrophin Receptor , 2008, The Journal of Neuroscience.

[197]  D. Rubinsztein,et al.  Mechanisms of Autophagosome Biogenesis , 2012, Current Biology.

[198]  Guido Kroemer,et al.  Mitochondrio‐nuclear translocation of AIF in apoptosis and necrosis , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[199]  S. Akira,et al.  Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages , 2009, Nature Cell Biology.

[200]  B. Xiao,et al.  Downregulation of Pael-R expression in a Parkinson’s disease cell model reduces apoptosis , 2012, Journal of Clinical Neuroscience.

[201]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[202]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[203]  E. Wiechec Implications of genomic instability in the diagnosis and treatment of breast cancer , 2011, Expert review of molecular diagnostics.

[204]  K. Coombs,et al.  Virus‐triggered autophagy in viral hepatitis – possible novel strategies for drug development , 2011, Journal of viral hepatitis.

[205]  Júlia Costa,et al.  Mutant superoxide dismutase 1 overexpression in NSC-34 cells: Effect of trehalose on aggregation, TDP-43 localization and levels of co-expressed glycoproteins , 2010, Neuroscience Letters.

[206]  A. Fayyazi,et al.  Deletion of the SNARE vti1b in Mice Results in the Loss of a Single SNARE Partner, Syntaxin 8 , 2003, Molecular and Cellular Biology.

[207]  Gareth Griffiths,et al.  Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum , 2008, The Journal of cell biology.

[208]  M. Vila,et al.  Neurological diseases: Targeting programmed cell death in neurodegenerative diseases , 2003, Nature Reviews Neuroscience.

[209]  G. Kroemer,et al.  Autophagy for tissue homeostasis and neuroprotection. , 2011, Current opinion in cell biology.

[210]  M. Eshraghi,et al.  Apoptosis and cancer: mutations within caspase genes , 2009, Journal of Medical Genetics.

[211]  A. Jegorov,et al.  Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. , 2008, Free radical biology & medicine.

[212]  S. Schmidt,et al.  Presenilin Mutations in Familial Alzheimer Disease and Transgenic Mouse Models Accelerate Neuronal Lysosomal Pathology , 2004, Journal of neuropathology and experimental neurology.

[213]  R. Miller,et al.  Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[214]  E. Hirsch,et al.  Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[215]  D. Dickson,et al.  The Pathogenesis of Senile Plaques , 1997, Journal of neuropathology and experimental neurology.

[216]  C. Shults Coenzyme Q10 in neurodegenerative diseases. , 2003, Current medicinal chemistry.

[217]  Eugene M. Johnson,et al.  Mixed-lineage kinases: a target for the prevention of neurodegeneration. , 2004, Annual review of pharmacology and toxicology.

[218]  Tomomi Gotoh,et al.  ER Stress Triggers Apoptosis by Activating BH3-Only Protein Bim , 2007, Cell.

[219]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[220]  Mark A. Wilson,et al.  The oxidation state of DJ-1 regulates its chaperone activity toward α-synuclein , 2006 .

[221]  I. Dixon,et al.  Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts , 2012, Cell Death and Disease.

[222]  W. Klein,et al.  The E693Delta mutation in amyloid precursor protein increases intracellular accumulation of amyloid beta oligomers and causes endoplasmic reticulum stress-induced apoptosis in cultured cells. , 2009, The American journal of pathology.

[223]  Han-Ming Shen,et al.  Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy , 2012, Autophagy.

[224]  E. Baehrecke,et al.  Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila , 2007, Cell.

[225]  R. Akundi,et al.  Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice , 2011, PloS one.

[226]  J. Kountouras,et al.  Helicobacter pylori infection and Parkinson’s disease: apoptosis as an underlying common contributor , 2012, European journal of neurology.

[227]  S. Vandenberg,et al.  Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. , 2010, The Journal of clinical investigation.

[228]  H. Kawamata,et al.  Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. , 2009, Human molecular genetics.

[229]  A. Kaasik,et al.  Up‐regulation of lysosomal cathepsin L and autophagy during neuronal death induced by reduced serum and potassium , 2005, The European journal of neuroscience.

[230]  P. Wesseling,et al.  Expression pattern of apoptosis-related markers in Huntington’s disease , 2005, Acta Neuropathologica.

[231]  C. Chu,et al.  ATP13A2 regulates mitochondrial bioenergetics through macroautophagy , 2012, Neurobiology of Disease.

[232]  S. Tsuji,et al.  Intranuclear Degradation of Polyglutamine Aggregates by the Ubiquitin-Proteasome System* , 2009, Journal of Biological Chemistry.

[233]  Peter T. Lansbury,et al.  Impaired Degradation of Mutant α-Synuclein by Chaperone-Mediated Autophagy , 2004, Science.

[234]  W. Fiers,et al.  Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis , 1995, Nature.

[235]  M. Colombo,et al.  Rab7 is required for the normal progression of the autophagic pathway in mammalian cells , 2004, Journal of Cell Science.

[236]  Hormesis: protecting neurons against cellular stress in Parkinson disease. , 2012, Autophagy.

[237]  D. Kang,et al.  A fragment of the scaffolding protein RanBP9 is increased in Alzheimer's disease brains and strongly potentiates amyloid‐β peptide generation , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[238]  Gabriele Siciliano,et al.  Lithium delays progression of amyotrophic lateral sclerosis , 2008, Proceedings of the National Academy of Sciences.

[239]  L. Raymond,et al.  Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease , 2006, Neurobiology of Disease.

[240]  Qian Cai,et al.  Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration , 2012, Nature Reviews Neuroscience.

[241]  O. Sydow,et al.  LRRK2 expression linked to dopamine‐innervated areas , 2006, Annals of neurology.

[242]  J. Olcese,et al.  Protection against cognitive deficits and markers of neurodegeneration by long‐term oral administration of melatonin in a transgenic model of Alzheimer disease , 2009, Journal of pineal research.

[243]  Z. Qin,et al.  Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[244]  T. Südhof,et al.  α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro , 2010, Science.

[245]  S. Dimauro,et al.  Mitochondrial diseases. , 1989, Neurologic clinics.

[246]  J. Cha,et al.  Mechanisms of Disease: histone modifications in Huntington's disease , 2006, Nature Clinical Practice Neurology.

[247]  A. Kimchi,et al.  Life and death partners: apoptosis, autophagy and the cross-talk between them , 2009, Cell Death and Differentiation.

[248]  Guido Kroemer,et al.  Lysosomes and autophagy in cell death control , 2005, Nature Reviews Cancer.

[249]  M. Hayden,et al.  Huntington disease: new insights on the role of huntingtin cleavage. , 2000, Journal of neural transmission. Supplementum.

[250]  J. Larrick,et al.  Rapamycin as an antiaging therapeutic?: targeting mammalian target of rapamycin to treat Hutchinson-Gilford progeria and neurodegenerative diseases. , 2011, Rejuvenation research.

[251]  M. Behari,et al.  Mitochondrial Perturbance and Execution of Apoptosis in Platelet Mitochondria of Patients With Amyotrophic Lateral Sclerosis , 2011, The International journal of neuroscience.

[252]  J. Cooper,et al.  Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease. , 2011, Human molecular genetics.

[253]  Jianhua Zhang,et al.  Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons , 2011, Molecular Neurodegeneration.

[254]  L. Barbeito,et al.  Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis , 2002, Journal of neuroscience research.

[255]  C. Plata-salamán,et al.  Inflammation and Alzheimer’s disease , 2000, Neurobiology of Aging.

[256]  T. Mak,et al.  Apaf1 Is Required for Mitochondrial Pathways of Apoptosis and Brain Development , 1998, Cell.

[257]  Steve D. M. Brown,et al.  Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease , 2010, Human molecular genetics.

[258]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[259]  E. Nagata,et al.  Inositol hexakisphosphate kinases promote autophagy. , 2010, The international journal of biochemistry & cell biology.

[260]  J. Gusella DNA Markers in Huntington’s Disease , 1985 .

[261]  M. Blagosklonny Prospective treatment of age-related diseases by slowing down aging. , 2012, The American journal of pathology.

[262]  M. Los,et al.  Mitoptosis, a Novel Mitochondrial Death Mechanism Leading Predominantly to Activation of Autophagy , 2012, Hepatitis monthly.

[263]  Isabella Pisano,et al.  Rapamycin reduces oxidative stress in frataxin-deficient yeast cells. , 2012, Mitochondrion.

[264]  M. Kobori,et al.  Autophagy impairment stimulates PS1 expression and γ-secretase activity , 2010, Autophagy.

[265]  L. Martin Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases , 2010, Pharmaceuticals.

[266]  Ludovico Minati,et al.  Reviews: Current Concepts in Alzheimer's Disease: A Multidisciplinary Review , 2009, American journal of Alzheimer's disease and other dementias.

[267]  S. Young,et al.  ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.

[268]  O. Surova,et al.  Various modes of cell death induced by DNA damage , 2013, Oncogene.

[269]  Jayanta Debnath,et al.  Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease , 2010, PloS one.

[270]  E. Arriaga,et al.  Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. , 2010, Antioxidants & redox signaling.

[271]  C. Bendotti,et al.  The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). , 2010, Human molecular genetics.

[272]  F. Crews,et al.  Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration , 2007, Glia.

[273]  Aaron Ciechanover,et al.  Proteolysis: from the lysosome to ubiquitin and the proteasome , 2005, Nature Reviews Molecular Cell Biology.

[274]  Laura Fratiglioni,et al.  The epidemiology of the dementias: an update , 2007, Current opinion in psychiatry.

[275]  T. Maeda,et al.  Aging-Associated Alteration of Telomere Length and Subtelomeric Status in Female Patients With Parkinson's Disease , 2012, Journal of neurogenetics.

[276]  E. Masliah,et al.  Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux , 2009, Journal of neurochemistry.

[277]  Y. Agid,et al.  Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. , 1997, Histology and histopathology.

[278]  R. Nixon,et al.  Autophagy and neuronal cell death in neurological disorders. , 2012, Cold Spring Harbor perspectives in biology.

[279]  J. Trojanowski,et al.  Neuronal α-Synucleinopathy with Severe Movement Disorder in Mice Expressing A53T Human α-Synuclein , 2002, Neuron.

[280]  S. Haggarty,et al.  Emerging roles of epigenetic mechanisms in Parkinson’s disease , 2011, Functional & Integrative Genomics.

[281]  W. Chiu,et al.  Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. , 2013, The Journal of surgical research.

[282]  D. Rubinsztein,et al.  Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. , 2004, The international journal of biochemistry & cell biology.

[283]  T. Südhof,et al.  Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. , 2005, Cell.

[284]  T. Molitor,et al.  Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. , 1992, Journal of immunology.

[285]  A. Kanthasamy,et al.  α-Synuclein Negatively Regulates Protein Kinase Cδ Expression to Suppress Apoptosis in Dopaminergic Neurons by Reducing p300 Histone Acetyltransferase Activity , 2011, The Journal of Neuroscience.

[286]  L. Hansen,et al.  Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis , 2008, Journal of Cell Science.

[287]  Nobutaka Hattori,et al.  Progress in the pathogenesis and genetics of Parkinson's disease , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[288]  D. Rubinsztein,et al.  Rapamycin pre-treatment protects against apoptosis. , 2006, Human molecular genetics.

[289]  Peter Davies,et al.  Resveratrol Promotes Clearance of Alzheimer's Disease Amyloid-β Peptides* , 2005, Journal of Biological Chemistry.

[290]  J. Simon,et al.  AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates Amyloid-β Peptide Metabolism* , 2010, The Journal of Biological Chemistry.

[291]  L. Tjernberg,et al.  Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer's disease , 2005, The Journal of cell biology.

[292]  D. Rubinsztein,et al.  Cytoprotective roles for autophagy , 2010, Current opinion in cell biology.

[293]  J. Jankovic,et al.  Resveratrol-Activated AMPK/SIRT1/Autophagy in Cellular Models of Parkinson's Disease , 2011, Neurosignals.

[294]  P. Picone,et al.  Abeta oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. , 2009, Biophysical journal.

[295]  S. Koh,et al.  Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway. , 2012, Neurotoxicology.

[296]  S. Goldstein,et al.  Degenerative phenotypes caused by the combined deficiency of murine HIP1 and HIP1r are rescued by human HIP1. , 2007, Human molecular genetics.

[297]  P. Mcgeer,et al.  Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains , 1988, Neurology.

[298]  K. Ono,et al.  The Development of Preventives and Therapeutics for Alzheimers Disease that Inhibit the Formation of β-Amyloid Fibrils (fAβ), as Well as Destabilize Preformed fAβ , 2006 .

[299]  S. Sasaki Autophagy in Spinal Cord Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis , 2011, Journal of neuropathology and experimental neurology.

[300]  J. Jankovic Parkinson’s disease: clinical features and diagnosis , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[301]  P. Agostinho,et al.  Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. , 2010, Current pharmaceutical design.

[302]  D. Centonze,et al.  Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease , 2012, Neurobiology of Aging.

[303]  J. Gal,et al.  Mitochondrial dysfunction is a converging point of multiple pathological pathways in amyotrophic lateral sclerosis. , 2010, Journal of Alzheimer's disease : JAD.

[304]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[305]  G. Mora,et al.  Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process , 2009, Journal of Neuroimmunology.

[306]  R. Resende,et al.  Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: Involvement of endoplasmic reticulum calcium release in oligomer-induced cell death , 2008, Neuroscience.

[307]  L. Van Den Bosch,et al.  Amyotrophic lateral sclerosis and excitotoxicity: from pathological mechanism to therapeutic target. , 2010, CNS & neurological disorders drug targets.

[308]  S. Gandy,et al.  Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model , 2013, Autophagy.

[309]  S. Ryazantsev,et al.  Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[310]  Markus R. Wenk,et al.  Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase* , 2010, The Journal of Biological Chemistry.

[311]  C. Miller,et al.  Bax-deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation , 2012, Oncogene.

[312]  Karin Ackermann,et al.  Progress In Neurobiology , 2016 .

[313]  Joseph B. Martin Huntington's disease , 1984, Neurology.

[314]  Hong-Gang Wang,et al.  BARgaining membranes for autophagosome formation: Regulation of autophagy and tumorigenesis by Bif-1/Endophilin B1 , 2008, Autophagy.

[315]  B. Ritz,et al.  Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease , 2007, Neurology.

[316]  Robert H. Brown,et al.  Molecular biology of amyotrophic lateral sclerosis: insights from genetics , 2006, Nature Reviews Neuroscience.

[317]  D. Rubinsztein,et al.  Regulation of mammalian autophagy in physiology and pathophysiology. , 2010, Physiological reviews.

[318]  P. Matarrese,et al.  Genotype‐dependent priming to self‐ and xeno‐cannibalism in heterozygous and homozygous lymphoblasts from patients with Huntington's disease , 2006, Journal of neurochemistry.

[319]  M. Duchen,et al.  β-Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase , 2004, The Journal of Neuroscience.

[320]  J. Puyal,et al.  Autophagic cell death exists , 2012, Autophagy.

[321]  S. Daniel,et al.  Glial pathology but absence of apoptotic nigral neurons in long‐standing Parkinson's disease , 1998, Movement disorders : official journal of the Movement Disorder Society.

[322]  P. Hof,et al.  Gene-Environment Interaction Research and Transgenic Mouse Models of Alzheimer's Disease , 2010, International journal of Alzheimer's disease.

[323]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[324]  S. Smaili,et al.  The role of mitochondrial function in glutamate-dependent metabolism in neuronal cells. , 2011, Current pharmaceutical design.

[325]  A. Dillin,et al.  Aging as an event of proteostasis collapse. , 2011, Cold Spring Harbor perspectives in biology.

[326]  I. Ferrer,et al.  Chaperone-mediated autophagy markers in Parkinson disease brains. , 2010, Archives of neurology.

[327]  M. Robin,et al.  Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells , 2003, The Journal of cell biology.

[328]  M. Cozzolino,et al.  SOD1 and mitochondria in ALS: a dangerous liaison , 2011, Journal of bioenergetics and biomembranes.

[329]  H. Yang,et al.  DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. , 2012, Journal of molecular biology.

[330]  K. Öllinger,et al.  Regulation of apoptosis-associated lysosomal membrane permeabilization , 2010, Apoptosis.

[331]  K. Tipton,et al.  Monoamine oxidases: certainties and uncertainties. , 2004, Current medicinal chemistry.

[332]  L. Staudt,et al.  Control of autophagic cell death by caspase-10 in multiple myeloma. , 2013, Cancer cell.

[333]  M. Vila,et al.  Pathogenic Lysosomal Depletion in Parkinson's Disease , 2010, The Journal of Neuroscience.

[334]  G. Petsko,et al.  The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. , 2006, Journal of molecular biology.

[335]  R. Takahashi,et al.  Parkin Phosphorylation and Modulation of Its E3 Ubiquitin Ligase Activity* , 2005, Journal of Biological Chemistry.

[336]  D. Rubinsztein,et al.  The roles of intracellular protein-degradation pathways in neurodegeneration , 2006, Nature.

[337]  F. Chan,et al.  Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation , 2009, Cell.

[338]  S. Ghavami,et al.  Autoimmunity and apoptosis--therapeutic implications. , 2007, Current medicinal chemistry.

[339]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[340]  S. Snyder,et al.  Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization , 1999, Nature Medicine.

[341]  H. Levine,et al.  The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. , 2000, Molecular neurobiology.

[342]  D. Sulzer Clues to how alpha‐synuclein damages neurons in Parkinson's disease , 2010, Movement disorders : official journal of the Movement Disorder Society.

[343]  Xi Chen,et al.  Materials and Methods Som Text Figs. S1 and S2 Table S1 References Abad Directly Links A␤ to Mitochondrial Toxicity in Alzheimer's Disease , 2022 .

[344]  M. Xilouri,et al.  Autophagy in the central nervous system: implications for neurodegenerative disorders. , 2010, CNS & neurological disorders drug targets.

[345]  R. Krüger,et al.  Reduced Basal Autophagy and Impaired Mitochondrial Dynamics Due to Loss of Parkinson's Disease-Associated Protein DJ-1 , 2010, PloS one.

[346]  T. Ishrat,et al.  Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson's disease , 2010, Brain Research.

[347]  C. Lengerke,et al.  Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development , 2013, Journal of cellular and molecular medicine.

[348]  Robert H. Brown,et al.  XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. , 2009, Genes & development.

[349]  J. Ghiso,et al.  Insights into Caspase-Mediated Apoptotic Pathways Induced by Amyloid-β in Cerebral Microvascular Endothelial Cells , 2011, Neurodegenerative Diseases.

[350]  N. Mizushima,et al.  The role of the Atg1/ULK1 complex in autophagy regulation. , 2010, Current opinion in cell biology.

[351]  W. Mckeehan,et al.  Microtubule-associated Protein 1S (MAP1S) Bridges Autophagic Components with Microtubules and Mitochondria to Affect Autophagosomal Biogenesis and Degradation* , 2011, The Journal of Biological Chemistry.

[352]  Patrizia Rizzu,et al.  Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism , 2002, Science.

[353]  K. Shin,et al.  AIF translocates to the nucleus in the spinal motor neurons in a mouse model of ALS , 2006, Neuroscience Letters.

[354]  P. Liberski,et al.  Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. , 2004, The international journal of biochemistry & cell biology.

[355]  A. Jon Stoessl,et al.  Etiology of Parkinson's Disease , 2003, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[356]  Elena Cattaneo,et al.  Molecular mechanisms and potential therapeutical targets in Huntington's disease. , 2010, Physiological reviews.

[357]  Xiulian Sun,et al.  Degradation of regulator of calcineurin 1 (RCAN1) is mediated by both chaperone‐mediated autophagy and ubiquitin proteasome pathways , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[358]  W. Le,et al.  Autophagy dysregulation in amyotrophic lateral sclerosis , 2012, Journal of the Neurological Sciences.

[359]  V. Turk,et al.  Lysosomes and lysosomal cathepsins in cell death. , 2012, Biochimica et biophysica acta.

[360]  B. Oh,et al.  Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG , 2006, Nature Cell Biology.

[361]  M. Panjehshahin,et al.  Effect of Oral Resveratrol on the BDNF Gene Expression in the Hippocampus of the Rat Brain , 2011, Neurochemical Research.

[362]  Thomas C. Südhof,et al.  α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration , 2005, Cell.

[363]  G. Halliday,et al.  Aspects of Innate Immunity and Parkinson’s Disease , 2012, Front. Pharmacol..

[364]  Robert B. Petersen,et al.  Mitochondrial abnormalities in Alzheimer disease , 2000, Neurobiology of Aging.

[365]  José Luis de la Pompa,et al.  Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo , 1998, Cell.

[366]  Kevin A. Roth,et al.  bax Deficiency Prevents the Increased Cell Death of Immature Neurons in bcl-x-Deficient Mice , 1997, The Journal of Neuroscience.

[367]  M. Thun,et al.  Pesticide exposure and risk for Parkinson's disease , 2006, Annals of neurology.

[368]  Brian Seed,et al.  Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule , 2000, Nature Immunology.

[369]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[370]  J. Trojanowski,et al.  Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. , 2002, Neuron.

[371]  P. Carvey,et al.  Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. , 2001, Experimental neurology.

[372]  M. Youdim,et al.  Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition , 2005, Journal of neuroscience research.

[373]  Smita Majumder,et al.  Inducing Autophagy by Rapamycin Before, but Not After, the Formation of Plaques and Tangles Ameliorates Cognitive Deficits , 2011, Alzheimer's & Dementia.

[374]  L. Thompson,et al.  Autophagy regulates the processing of amino terminal huntingtin fragments. , 2003, Human molecular genetics.

[375]  L. Hansen,et al.  The effect of genetic variability on drug response in conventional breast cancer treatment. , 2009, European journal of pharmacology.

[376]  Hyoung-Gon Lee,et al.  Oxidative Damage to RNA in Aging and Neurodegenerative Disorders , 2012, Neurotoxicity Research.

[377]  K. Sakimura,et al.  Motor Neuron-specific Disruption of Proteasomes, but Not Autophagy, Replicates Amyotrophic Lateral Sclerosis* , 2012, The Journal of Biological Chemistry.

[378]  D. Linseman,et al.  Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade. , 2012, Journal of Alzheimer's disease : JAD.

[379]  Peter K. Kim,et al.  Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation , 2010, Cell.

[380]  S. Cory,et al.  Apoptosomes: engines for caspase activation. , 2002, Current opinion in cell biology.

[381]  S. Cardoso,et al.  Mitochondria drive autophagy pathology via microtubule disassembly , 2013, Autophagy.

[382]  C. Atwood,et al.  Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[383]  P. Vandenabeele,et al.  Molecular mechanisms of necroptosis: an ordered cellular explosion , 2010, Nature Reviews Molecular Cell Biology.

[384]  Kunxi Zhang,et al.  Food restriction-induced autophagy modulates degradation of mutant SOD1 in an amyotrophic lateral sclerosis mouse model , 2013, Brain Research.

[385]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[386]  S. Subramani,et al.  Molecular mechanism and physiological role of pexophagy , 2010, FEBS letters.

[387]  Werner Poewe,et al.  A double-blind, delayed-start trial of rasagiline in Parkinson's disease. , 2009, The New England journal of medicine.

[388]  Damian C Crowther,et al.  Protein misfolding and disease: from the test tube to the organism. , 2008, Current opinion in chemical biology.

[389]  J. Quinn,et al.  Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. , 2006, Human molecular genetics.