Plasmonic-Layered InAs/InGaAs Quantum-Dots-in-a-Well Pixel Detector for Spectral-Shaping and Photocurrent Enhancement

The algorithmic spectrometry as an alternative to traditional approaches has the potential to become the next generation of infrared (IR) spectral sensing technology, which is free of physical optical filters, and only a very small number of data are required from the IR detector. A key requirement is that the detector spectral responses must be engineered to create an optimal basis that efficiently synthesizes spectral information. Light manipulation through metal perforated with a two-dimensional square array of subwavelength holes provides remarkable opportunities to harness the detector response in a way that is incorporated into the detector. Instead of previous experimental efforts mainly focusing on the change over the resonance wavelength by tuning the geometrical parameters of the plasmonic layer, we experimentally and numerically demonstrate the capability for the control over the shape of bias-tunable response spectra using a fixed plasmonic structure as well as the detector sensitivity improvement, which is enabled by the anisotropic dielectric constants of the quantum dots-in-a-well (DWELL) absorber and the presence of electric field along the growth direction. Our work will pave the way for the development of an intelligent IR detector, which is capable of direct viewing of spectral information without utilizing any intervening the spectral filters.

[1]  L. Colace,et al.  Narrowband colloidal quantum dot photodetectors for wavelength measurement applications. , 2020, Nanoscale.

[2]  Kai Chen,et al.  Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface , 2019, Nanomaterials.

[3]  K. Crozier,et al.  Mid- to long-wave infrared computational spectroscopy using a subwavelength coaxial aperture array , 2019, Scientific Reports.

[4]  D. Chanda,et al.  Multi-spectral frequency selective mid-infrared microbolometers. , 2018, Optics express.

[5]  A. Urbas,et al.  Strong Responsivity Enhancement of Quantum Dot‐in‐a‐Well Infrared Photodetectors Using Plasmonic Structures , 2018, Advanced Theory and Simulations.

[6]  Qi Li,et al.  Surface plasmon-enhanced dual-band infrared absorber for -based microbolometer application* , 2017 .

[7]  Hye-Jin Kim,et al.  Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy , 2017, Sensors.

[8]  Xuejun Lu,et al.  A plasmonic perfect absorber enhanced longwave infrared quantum dot infrared photodetector with high quantum efficiency , 2017 .

[9]  Sang Jun Lee,et al.  Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array , 2016, Scientific reports.

[10]  Zhiming M. Wang,et al.  Dual-band absorber for multispectral plasmon-enhanced infrared photodetection , 2016 .

[11]  Kai Chen,et al.  Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors , 2016 .

[12]  M. Bawendi,et al.  A colloidal quantum dot spectrometer , 2015, Nature.

[13]  Woo-Yong Jang,et al.  Plasmonic Superpixel Sensor for Compressive Spectral Sensing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Piotr Martyniuk,et al.  New concepts in infrared photodetector designs , 2014 .

[15]  Jiang-Yan Li,et al.  Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays , 2014 .

[16]  G. Lerondel,et al.  Plasmonic Hybrid Cavity-Channel Structure for Tunable Narrow-Band Optical Absorption , 2014, IEEE Photonics Technology Letters.

[17]  A plasmonic infrared photodetector with narrow bandwidth absorption , 2014 .

[18]  D. Horsley,et al.  Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber , 2014 .

[19]  Low-cost microbolometer with nano-scaled plasmonic absorbers for far infrared thermal imaging applications , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[20]  Hae-Seok Park,et al.  Newly developed broadband plasmonic absorber for uncooled infrared detectors , 2014, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[21]  S. Krishna,et al.  Effect of barrier on the performance of sub-monolayer quantum dot infrared photodetectors , 2014 .

[22]  Masafumi Kimata,et al.  Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber , 2013 .

[23]  Jarrod Vaillancourt,et al.  Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement , 2013 .

[24]  Sanjay Krishna,et al.  Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors. , 2013, Optics express.

[25]  Sanjay Krishna,et al.  Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors , 2013 .

[26]  Jarrod Vaillancourt,et al.  Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves , 2013 .

[27]  I. Yamada,et al.  Hole shape effect induced optical response to permittivity change in palladium sub-wavelength hole arrays upon hydrogen exposure , 2012 .

[28]  P. D. Flammer,et al.  Plasmonic Band-Pass Microfilters for LWIR Absorption Spectroscopy , 2012 .

[29]  James A. Ratches,et al.  Review of current aided/automatic target acquisition technology for military target acquisition tasks , 2011 .

[30]  Sang Jun Lee,et al.  A monolithically integrated plasmonic infrared quantum dot camera. , 2011, Nature communications.

[31]  S Krishna,et al.  Versatile Spectral Imaging With an Algorithm-Based Spectrometer Using Highly Tuneable Quantum Dot Infrared Photodetectors , 2011, IEEE Journal of Quantum Electronics.

[32]  S. Krishna,et al.  Review of current progress in quantum dot infrared photodetectors , 2010 .

[33]  Sanjay Krishna,et al.  A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .

[34]  Zhiyuan Li,et al.  Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films , 2010 .

[35]  S. Krishna,et al.  Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities , 2010, IEEE Journal of Quantum Electronics.

[36]  S Krishna,et al.  Quantum dot infrared photodetector enhanced by surface plasma wave excitation. , 2009, Optics express.

[37]  Sanjay Krishna,et al.  A multispectral and polarization-selective surface-plasmon resonant midinfrared detector , 2009, 0907.2945.

[38]  S. Krishna,et al.  Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors , 2009, IEEE Journal of Quantum Electronics.

[39]  C. Jagadish,et al.  Properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum-dots-in-a-well infrared photodetectors , 2009 .

[40]  Tim Williams,et al.  Performance of a long-wave infrared hyperspectral imager using a Sagnac interferometer and an uncooled microbolometer array. , 2008, Applied optics.

[41]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[42]  P. Bandaru,et al.  Effect of surface texture and geometry on spoof surface plasmon dispersion , 2008 .

[43]  Luke R. Wilson,et al.  Stark shift of the spectral response in quantum dots-in-a-well infrared photodetectors , 2007 .

[44]  Wei Zhang,et al.  High operating temperature 320×256 middle-wavelength infrared focal plane array imaging based on an InAs∕InGaAs∕InAlAs∕InP quantum dot infrared photodetector , 2007 .

[45]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[46]  Sanjay Krishna,et al.  Statistical adaptive sensing by detectors with spectrally overlapping bands. , 2006, Applied optics.

[47]  Håkan Pettersson,et al.  Origin of photocurrent in lateral quantum dots-in-a-well infrared photodetectors , 2006 .

[48]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[49]  Yves Roggo,et al.  Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms , 2005 .

[50]  Zhipeng Wang,et al.  Quantum dot detectors for mid-infrared sensing: bias-controlled spectral tuning and matched filtering , 2004, SPIE Optics East.

[51]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[52]  J. Scott Tyo,et al.  Spectrally adaptive infrared photodetectors with bias-tunable quantum dots , 2004 .

[53]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[54]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[55]  A. Madhukar,et al.  Tailoring detection bands of InAs quantum-dot infrared photodetectors using InxGa1−xAs strain-relieving quantum wells , 2001 .

[56]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[57]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[58]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[59]  J. Mansfield,et al.  Infrared and Raman imaging of biological and biomimetic samples , 2000, Fresenius' journal of analytical chemistry.

[60]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[61]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[62]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[63]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[64]  David W. Warren,et al.  LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing , 1996, Optics & Photonics.

[65]  C. Lien,et al.  Strong Stark effect of the intersubband transitions in the three coupled quantum wells: Application to voltage‐tunable midinfrared photodetectors , 1995 .

[66]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[67]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.